基本信息
马红武  男  博导  中国科学院天津工业生物技术研究所
电子邮件: ma_hw@tib.cas.cn
通信地址: 天津市空港经济区西七道32号
邮政编码: 300308

研究领域

我的研究方向包括系统生物学、合成生物学和计算生物学,重点是数据和模型指导下的细胞系统设计。主要研究领域包括:

1. 基因组规模代谢网络构建分析与代谢途径设计

代谢网络的快速半自动构建,代谢网络的标准化、质量控制及途径比较分析方法,通量平衡分析计算与可视化软件工具包的开发,基于复合代谢网络的途径设计。

2. 代谢途径及基因调控回路的动力学模型分析

酶的表达纯化及动力学表征,代谢途径动力学模型构建,代谢控制分析及关键酶确定,基因调控回路动力学模型及复杂代谢途径控制策略。

3. 新途径的体外体内实验验证和代谢工程菌种改造

基于苏氨酸循环途径和非氧化酵解的PHB、丙酮和异丙醇等代谢工程菌种构建,中心代谢途径的体外构建和动力学分析,CO2及甲醛甲醇利用新途径的体外构建,利用体外多酶催化生产5-氨基乙酰丙酸的途径设计和优化

4. 微生物基因组分析和宏基因组分析

工业菌株的基因组注释和比较功能分析,土壤及海洋环境样品的宏基因组分析,微生物菌群组成分析及控制,农业用微生物菌剂开发。

招生信息

欢迎具有生物化工、生物工程、微生物学方面教育背景的学生报考,特别欢迎受到生物学方面教育,同时对计算机编程又非常赶兴趣的学生

招生专业
081703-生物化工
071021-生物信息学
071023-计算生物学
招生方向
系统生物学
代谢工程
生物信息学

教育背景

1997-09--2001-03   天津大学化工学院   博士研究生
1993-09--1996-03   天津大学化工学院   硕士研究生
1989-09--1993-07   天津大学   本科学士学位

教授课程

工业生物技术——生物技术的第三次浪潮系列讲座
计算系统生物学

专利与奖励

2014年 汤森路透高被引科学家奖

科研活动

   
科研项目
( 1 ) 用合成生物学方法构建生物基材料的合成新途径 课题三:基于网络分析的DNA模块设计与组装, 主持, 国家级, 2012-02--2016-09
( 2 ) 大肠杆菌集成生物网络的构建与分析, 主持, 省级, 2012-10--2015-09
( 3 ) 数据和模型相结合的生物产品代谢途径设计的研究, 主持, 省级, 2014-10--2017-09

发表论文

Chen Zhiqiang, Yuan Qianqian, Zheng Yangyang and Ma Hongwu (2017)Engineering Escherichia coli for poly-β-hydroxybutyrate production from methanol, Food Technology and Biotechnology, in revision

Yangyang Zheng, Qianqian Yuan, Xiaoyan Yang, Yan Zhang, Tao Chen, Hongwu Ma*, (2017) Engineering Escherichia coli For Poly-(3-hydroxybutyrate) Production Guided by Genome-scale Metabolic Network Analysis, Enzymes Microbial Tech., 1061160.

Qianqian Yuan , Teng Huang, Tong Hao, Feiran Li, Hongwu Ma*, Zhiwen Wang, Xueming Zhao* , Tao Chen*, Igor Goryanin(2017) Pathway-Consensus Approach to Metabolic Network Reconstruction for Pseudomonas putida KT2440 by Systematic Comparison of Published Models,  PLOS ONE, 12(1):e0169437.

Xiaoyan Yang, Qianqian Yuan, Yangyang Zheng, Hongwu Ma* , Tao Chen, Xueming Zhao, (2016)  An engineered non-oxidative glycolysis pathway for acetone production in Escherichia coli, Biotechnology letters, 38(8), 1359-1365

Qinglong Meng, Yanfei Zhang, Xiaozhi Ju, Chunling Ma, Hongwu Ma*, Jiuzhou Chen, Ping Zheng, Jibin Sun, Jun Zhu, Yanhe Ma, Tao Chen*, Xueming Zhao(2016) Production of 5-aminolevulinic acid by cell free multi-enzyme catalysisJ Biotechnology226(1)8-13

Wei Zhou, Chun You, Hongwu Ma, Yanhe Ma, and Y.-H. Percival Zhang (2016One-Pot Biosynthesis of High-Concentration α-Glucose 1-Phosphate from Starch by Sequential Addition of Three Hyperthermophilic Enzymes, J Agric Food Chem.  64(8):1777-83

Zhenquan Lin, Yan Zhang, Yuan Qianqian,, Qiaojie Liu, Yifan Li, Zhiwen Wang, Hongwu Ma*,  Tao Chen*, Xueming Zhao, (2015) Metabolic engineering of Escherichia coli for poly(3-hydroxybutyrate) production via threonine bypass, Microb Cell Fact  14:185

Qinglong Meng, Yanfei Zhang, Chunling Ma, Hongwu Ma*, Tao Chen, Xueming Zhao(2015) Purification and functional characterization of thermostable 5-aminolevulinic acid synthaseBiotechnology letters, 37112247-2253

Yanfei ZhangQinglong MengHongwu Ma*Yongfei LiuGuoqiang CaoXiaoran ZhangPing Zheng Jibin SunDawei ZhangWenxia JiangYanhe Ma(2015) Determination of key enzymes for threonine synthesis through in vitro metabolic pathway analysis, Microbial Cell Factories 141):86

Larisa Kiseleva1, Sofya K. Garushyants, Hongwu Ma, David J.W. Simpson , Viatcheslav Fedorovich , Michael F. Cohen , Igor Goryanin, (2015) Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters, Journal of Integrative Bioinformatics, 12(1):273.

Zhang Y, Lin Z, Liu Q, Li Y, Wang Z, Ma H, Chen T, Zhao X. (2015) Engineering of Serine-Deamination pathway, Entner-Doudoroff pathway and pyruvate dehydrogenase complex to improve poly(3-hydroxybutyrate) production in Escherichia coli. Microb Cell Factories 13(1):172

GC Sharp, HW Ma, PYK Saunders, JE Norman 2013A computational model of lipopolysaccharide-induced nuclear factor kappa B activation: a key signalling pathway in preterm labour. PLOS ONE (in review)

Tong Hao, Binbin Han, Hongwu Ma, Jing Fu, Hui Wang, Zhiwen Wang, Bincai Tang, Tao Chen, Xueming Zhao. (2013)  In silico Metabolic Engineering of Bacillus Subtilis for Improved Production of Riboflavin, Egl-237, (R,R)-2,3-butanediol and Isobutanol, Molecular BiosystemsDOI: 10.1039/C3MB25568A

Z Liu, HW Ma*, I Goryanin (2013) A semi-automated genome annotation comparison and integration scheme. BMC Bioinformatics, 14:172.

Hao, T., Ma, H., Zhao, X., and Goryanin, I. (2012). The Reconstruction and Analysis of Tissue Specific Human Metabolic Networks. Mol. BioSyst., 8:663-670.

FC Boogerd, HW Ma, F Bruggeman, W van Heeswijk, R García-Contreras, D Molenaar, K Krab, H Westerhoff  (2011) AmtB-mediated NH3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of NH4+ / NH3. FEBS letters 585(1) 23-28

Hao, T., Ma, H., Zhao, X., and Goryanin, I. (2010). Compartmentalization of the Edinburgh Human Metabolic Network. BMC bioinformatics 11, 393.

Ma, H., Boogerd, F. C., and Goryanin, I. (2009). Modelling nitrogen assimilation of Escherichia coli at low ammonium concentration. Journal of biotechnology 144, 175-83.

Ma, H., and Goryanin, I. (2008). Human metabolic network reconstruction and its impact on drug discovery and development. Drug discovery today 13, 402-8.

da Silva, M. R., Ma, H., and Zeng, A. (2008). Centrality, Network Capacity, and Modularity as Parameters to Analyze the Core-Periphery Structure in Metabolic Networks. Proceedings of the IEEE 96, 1411-1420.

Ma, H., Sorokin, A., Mazein, A., Selkov, A., Selkov, E., Demin, O., and Goryanin, I. (2007). The Edinburgh human metabolic network reconstruction and its functional analysis. Molecular systems biology 3, 135.

Wang, Q., Yang, Y., Ma, H., and Zhao, X. (2007). Metabolic network properties help assign weights to elementary modes to understand physiological flux distributions. Bioinformatics 23, 1049-52.

Van den Bulcke, T., Van Leemput, K., Naudts, B., van Remortel, P., Ma, H., Verschoren, A., De Moor, B., and Marchal, K. (2006). SynTReN: a generator of synthetic gene expression data for design and analysis of structure learning algorithms. BMC bioinformatics 7, 43.

Ma, H., Buer, J., and Zeng, A. (2004). Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach. BMC bioinformatics 5, 199.

Ma, H., Kumar, B., Ditges, U., Gunzer, F., Buer, J., and Zeng, A. (2004). An extended transcriptional regulatory network of Escherichia coli and analysis of its hierarchical structure and network motifs. Nucleic acids research 32, 6643-9.

Ma, H., Zhao, X., Yuan, Y., and Zeng, A. (2004). Decomposition of metabolic network into functional modules based on the global connectivity structure of reaction graph. Bioinformatics 20, 1870-6.

Ma, H., and Zeng, A. (2004). Phylogenetic comparison of metabolic capacities of organisms at genome level. Molecular phylogenetics and evolution 31, 204-13.

Ma, H., and Zeng, A. (2003). The connectivity structure, giant strong component and centrality of metabolic networks. Bioinformatics 19, 1423-30.

Ma, H., and Zeng, A. (2003). Reconstruction of metabolic networks from genome data and analysis of their global structure for various organisms. Bioinformatics 19, 270-7.