General

11A Datun Road,
Chaoyang, Beijing 100101, China
People's Republic of China
Fax: +86-01-64889455

Tel: +86-10-64889455
Email:  guoqj@igsnrr.ac.cn


Research Areas

Dr. GUO Qingjun is employed as a professor at the Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, China. Dr. GUO obtained his Ph.D. in 2003 from the Chinese Academy of Sciences. He was a Humboldt fellow and guest researcher for 48 months at the Westfälische Wilhelms-Universität Münster,Germany, working together with Prof. Dr. Harald Strauss. 


He was awarded the National Natural Science Funds for Distinguished Young Scholar in 2016.


He was awarded the 15 session Hou Defeng award of the Mineralogy, Petrology and Geochemistry Youth Science Award of The Society of Chinese Mineralogy, Petrology and Geochemistry, and also a 2013 Winner of the Award for International Youth Scientific Cooperation of the Chinese Academy of Sciences. Research interests center on biogeochemical processes on Early Earth accompanied by traditional and non-traditional stable isotope fractionation, quality assessment of modern environments, detection of the sources and the fate of anthropogenic and natural compounds in air, soil and water, as well as remediation of polluted soils. His studies demonstrate that the combination of geochemical and multiple isotope diagnosis is a useful approach in order to get deeper insights into isotope fractionations and their mechanisms in the field of environmental geochemistry, to assess environmental quality, and to detect the sources of distinct pollutants in urban and rural areas. Physical-chemical or biological-chemical in situ joint remediation technologies have been utilized to remediate polluted soil in his studies.

 

Research interests

(1)Research interests center around the biogeochemical aspects of earth’s evolution, assessment of modern environment, tracing the source(s) (anthropogenic and natural) and fate of soil, water in the environment, remediating the polluting soil. Thereby, the isotopic compositions of organic and carbonate carbon, different sulfur-bearing phases, lead, cadmium and contents of trace element, REE distribution patterns and heavy metal elements in soil, water, plants, sediments, bio-minerals and organic matter are utilized as proxy signals and tracers for geologically and/or biologically driven processes and for biologically mediated reactions, assessment and remediation of environment in soil, sediments, surface waters and aquifer systems;

(2)Recent studies (Environmental quality assessment, soil remediation) on soil pollution at the industrial site of the Beijing Steel Company and the surrounding area. It has been found that Cadmium is seriously excessive in the industrial and surrounding soil and the planted vegetables. Meanwhile, there is a great risk of dispersion of pollution through surface runoff, which could contaminate the source of drinking water. Based on the results obtained from previous studies, physical-chemical or biological-chemical in situ joint remediation technologies will be utilized to remediate polluted soil on the Beijing Steel Company site and the surrounding area. The main remediation technologies are as follows: 1) Phytoextraction (hyperaccumulator)- chemical chelator technology, 2) Cash crops (low accumulation)-chemical immobilization technology, 3) Phytostabilization technology, 4) Phytoextraction-intercrop technology;

(3) A multiple isotope(C, N, O, S, Cd, Pb) and heavy metal elements investigation on surface and subsurface water in Beijing province with the main focus on groundwater. The project will focus the source(s), distribution and transport of dissolved contaminants such as nitrate, ammonium, sulfate and trace metals using well-established stable isotope techniques. This study is strongly needed for a comprehensive understanding of the local and regional groundwater status and to determine the essential factors controlling current groundwater pollution. The results of this investigation will provide important information to assess and enhance the quality of the vital groundwater resources of Beijing;

(4) Cadmium hyperaccumulator Castor oil plant mechanism research; Analytical Method for Precise Determination of Cadmium Isotopic Composition in Plant and soil samples; Fractionation of Stable Cadmium Isotopes in the Cadmium tolerant Ricinus communis and hyperaccumulator Solanum nigrum.


Education

-- 博士

Publications

Representative Publications:


1.     Wang, Z., Tian, L., Zhao, C., Du, C., Zhang, J., Sun, F., Tekleab, T. Z., Wei, R., Fu, P., Gooddy, D. C., Guo, Q.*, 2023. Source partitioning using phosphate oxygen isotopes and multiple models in a large catchment. Water Research,   https://doi.org/10.1016/j.watres.2023.120382.

2.   Qin, X., Dong, X., Tao, Z., Wei, R., Zhang, H., Guo, Q.*, 2023. Tracing the transboundary transport of atmospheric Particulate Bound Mercury driven by the East Asian monsoon. Journal of Hazardous Materials 446,130678.

3.   Tan, Q., Guo, Q.*, Wei, R., Zhu, G., Du, C., Hu, H., 2023. Influence of arbuscular mycorrhizal fungi on bioaccumulation and bioavailability of As and Cd: A meta-analysis. Environmental Pollution 316, 120619.

4.   Zhang, J., Wei, R., Tekleab, T. Z., Wang, Z., Cui, M., Du, C., Yue, F., Guo, Q.*, et al., 2023. Nitrate sources and transformations along the Yangtze river and its changes after strict environmental regulation. Journal of Hydrology 617,129037.

5.   Hussain, R., Luo, K.*, Guo, Q.*, 2023. Partition pattern and environmental consequences of the widespread coalmines and host rocks on the water of selected regions, China. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-023-01716-3.

6.   Zhang, J., Guo, Q.*, et al., 2022. Phytoplankton dominates the suspended particulate nitrogen source in the Yangtze River. Journal of Hydrology 615,128607.

7.   Duan, H., Zhang, D., Zhao, Z., Jiang, H., Zhang, C., Huang, X., Ma, B., Guo, Q., 2022. Isotope evidence for temporal and spatial variations of anthropogenic sulfate input in the Yihe River during the last decade. Environmental Pollution 313,120063.

8.   Deng, Y., Guo, Q.*, Liu, C., et al., 2022. Early diagenetic control on the enrichment and fractionation of rare earth elements in deep-sea sediments. Science Advances 8(25). https://www.science.org/doi/10.1126/sciadv.abn5466.

9.   Dong, X., Guo, Q.*, Han, X., Wei, R., Tao, Z., 2022. The isotopic patterns and source apportionment of nitrate and ammonium in atmospheric aerosol. Science of The Total Environment 803,149559.

10.           Tekleab, T. Z., Guo, Q.*, Zhao, C., Okoli, C. P., 2022. Sulfur, lead, and mercury in South Africa coals: existential form of the elements, isotope, and emissions from the coal fired-power plants. Environmental Earth Science 81, 116. https://doi.org/10.1007/s12665-021-10046-5.

11.           Deng, Y., Guo, Q.*, et al., 2022. Significant contribution of seamounts to the oceanic rare earth elements budget. Gondwana Research 112, 71-81.

12.           Du, C., Guo, Q.*, Zhang, J., 2022. A review on moss nitrogen and isotope signatures evidence for atmospheric nitrogen deposition. Science of The Total Environment https://doi.org/10.1016/j.scitotenv.2021.150765.

13.           Wang, Z., Guo, Q.*, Tian, L., 2022. Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes. Science of The Total Environment 829, 154611.

14.           Tekleab, T. Z., Guo, Q.*, Tian, L., Wei, R., Zhao, C., 2022. An integrated approach to quantify ecological and human health risks of soil heavy metal contamination around coal mining area. Science of The Total Environment 814, 152653.

15.           Yang, X., Guo, Q.*, Boyko, V., Avetisyan, K., Findlay, A. J., Huang, F., Wang, Z., Chen, Z., 2022. Isotopic reconstruction of iron oxidation-reduction process based on an Archean Ocean analogue. Science of The Total Environment 817, 152609.

16.           Chen, S., Xie, Q., Su, S., Wu, L., Zhong, S., Zhang, Z., Ma, C., Qi, Y., Hu, W., Deng, J., Ren, L., Zhu, D., Guo, Q., Liu, C., Jang, K. Fu, P., 2022. Source and Formation Process Impact the Chemodiversity of Rainwater Dissolved Organic Matter along the Yangtze River Basin in Summer. Water Research, 118024, https://doi.org/10.1016/j.watres.2021.118024.

17.           Han, X., Lang, Y., Guo, Q., Li, X., Ding, H., Li, S., 2022. Enhanced Oxidation of SO2 by H2O2 During Haze Events: Constraints from Sulfur Isotopes. Journal of Geophysical Research: Atmospheres 127(13), DOI: 10.1029/2022JD036960.

18.           Lin, Y., Wang S., Schobert, H. H., Guo, Q., Li, X., 2022. Sulfur and nitrogen isotopic composition of Late Permian bark coals: Source identification and associated environmental assessment. Organic Geochemistry164 (2022) 104369, 1-12.

19.           Deng, Y., Chen, F., Guo, Q.*, et al., 2021. Possible links between methane seepages and glacial-interglacial transitions in the South China Sea. Geophysical Research Letters, DOI:10.1029/2020GL091429.

20.           Boyko, V., Avetisyan, K., Findlay, A., Guo, Q.*, Yang, X., Kamyshny A.*, 2021. Biogeochemical cycling of sulfur, manganese and iron in ferruginous limnic analog of Archean ocean. Geochimica et Cosmochimica Acta 296, 56-74.

21.           Tao, Z., Guo, Q.*, et al., 2021. Atmospheric lead pollution in a typical megacity: Evidence from lead isotopes. Science of The Total Environment 778(5):145810. DOI: 10.1016/j.scitotenv.2021.145810.

22.           Du, C., Guo, Q.*, Zhang, J., 2021. A review on moss nitrogen and isotope signatures evidence for atmospheric nitrogen deposition. Science of The Total Environment, 150765.

23.           Famiyeh, L., Chen, K., Xu, J., Sun, Y., Guo, Q.*, …, Jun He*, 2021. A review on analysis methods, source identification, and cancer risk evaluation of atmospheric polycyclic aromatic hydrocarbons. Science of The Total Environment, 789, 147741.

24.           Cui, M., Guo, Q.*, et al., 2021. Temporal-spatial dynamics of anthropogenic nitrogen inputs and hotspots in a large River Basin. Chemosphere, https://doi.org/10.1016/j.chemosphere.2020.129411.

25.           Wang, L., Guo, Q.*, et al., 2021. Trace and rare earth elements geochemistry of sedimentary rocks in the Ediacaran-Cambrian transition from Tarim Basin, Northwest China: Constraints for redox environments. Precambrian Researchhttps://doi.org/10.1016/j.precamres.2020.105942.

26.           Wang, J., Wen, X.*, Liu, S.*, Zhang, X., Guo, Q., 2021. Vegetation recovery alters soil N status in subtropical karst plateau area: Evidence from natural abundance δ15N and δ18O, Plant and Soil, DOI: 10.1007/s11104-020-04797-6.

27.           Wang, L., Jin, Y., Weiss, D. J., Schleicher, N. J., Wilcke, W., Wu, L., Guo, Q., Chen, J., O’Connor, D., Hou, D., 2021. Possible application of stable isotope compositions for the identification of metal sources in soil. Journal of Hazardous Materials 407, 124812, https://doi.org/10.1016/j.jhazmat.2020.124812.

28.           Wang, J., Wen, X.*, Liu, S.*, Guo, Q., 2021. Soil properties mediate ecosystem intrinsic water use efficiency and stomatal conductance via taxonomic diversity and leaf economic spectrum. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2021.146968.

29.           Chen, C., Wen, X., Wang, J., Guo, Q., 2021. Continuous Measurements of Temporal and Vertical Variations in Atmospheric CO2 and Its δ13C in and above a Subtropical Plantation. Forests 12(5), 584. https://doi.org/10.3390/f12050584.

30.           Cui, M., Guo, Q.*, et al., 2020. Anthropogenic nitrogen and phosphorus inputs in a new perspective: environmental loads from the mega economic zone and city clusters. Journal of Cleaner Production, https://doi.org/10.1016/j.jclepro.2020.124589.

31.           Cui, M., Guo, Q.*, et al., 2020. Human-driven spatiotemporal distribution of phosphorus flux in the environment of a mega river basin. Science of The Total Environment 752, 141781-141793.

32.           Guo, Q.*, Wang, C., Wei*, R., Zhu, G., Cui, M., Okoli, C. P., 2020. Qualitative and quantitative analysis of source for organic carbon and nitrogen in sediments of rivers and lakes based on stable isotopes. Ecotoxicology and Environmental Safety 195, 110436-110446.

33.           Peters, M., Guo, Q.*, et al., 2020. Seasonal effects on contamination characteristics of tap water from rural Beijing: a multiple isotope approach. Journal of Hydrology, https://doi.org/10.1016/j.jhydrol.2020.125037.

34.           Han, X., Guo, Q.*, et al., 2020. Seasonal and long-term trends of sulfate, nitrate, and ammonium in PM2.5 in Beijing: implication for air pollution control. Environmental Science and Pollution Research 27, 23730-23741.

35.           Deng, Y., Chen, F. *, Hu, Y., Guo, Q.*, et al., 2020. Methane seepage patterns during the middle Pleistocene inferred from molybdenum enrichments of seep carbonates in the South China Sea. Ore Geology Reviews 125, 103701, 1-19.

36.           Han, X., Lang, Y., Wang, T., Liu, C., Li, F., Wang, F., Guo, Q., Li, S., et al., 2020. Temporal and spatial variations in stable isotopic compositions of precipitation during the typhoon Lekima (2019), China. Science of The Total Environment, https://doi.org/10.1016/j.scitotenv.2020.143143.

37.           Wei, Y., Cui, M., Ye, Z., Guo, Q., 2020. Environmental challenges from the increasing medical waste since SARS outbreak. Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2020.125246.

38.           Yin, X., Wei, R., Chen, H., Zhu, C., Liu, Y., Wen, H., Guo, Q., Ma, J., 2020. Cadmium isotope constraints on heavy metal sources in a riverine system impacted by multiple anthropogenic activities. Science of The Total Environment 750: 141233. DOI: 10.1016/j.scitotenv.2020.141233.

39.           Findlay, A.*, Boyko, V., Pellerin, A., Avetisyan, K., Guo, Q.*, Yang, X., Kamyshny, A., 2019. Sulphide oxidation affects the preservation of sulphur isotope signals. Geology 47 (8), 739-743.

40.           Tian, L., Guo, Q.*, et al., 2019. Phosphorus fractions and oxygen isotope composition of inorganic phosphate in typical agricultural soils. Chemosphere, https://doi.org/10.1016/j.chemosphere.2019.124622.

41.           Peters, M., Guo, Q.*, et al., 2019. Contamination patterns in river water from rural Beijing: A hydrochemical and multiple stable isotope study. Science of The Total Environment 654, 226-236.

42.           Okoli, C. P., Adewuyi, G. O., Zhang, Q., Zhu, G., Wang, C., Guo, Q.*, 2019. Aqueous scavenging of polycyclic aromatic hydrocarbons using epichlorohydrin, 1,6-hexamethylene diisocyanate and 4,4-methylene diphenyl diisocyanate modified starch: Pollution remediation approach. Arabian Journal of Chemistry 12, 2760-2773.

43.           Guo, Z., Guo, Q., et al., 2019. Study on pollution behavior and sulfate formation during the typical haze event in Nanjing with water soluble inorganic ions and sulfur isotopes. Atmospheric Research 217, 198-207.

44.           Chen, C., Wei, J., Wen, X., Sun, X., Guo, Q., 2019. Photosynthetic Carbon Isotope Discrimination and Effects on Daytime NEE Partitioning in a Subtropical Mixed Conifer Plantation. Agricultural and Forest Meteorology 272-273, 143-155.

45.           Wang, L., Han, X., Liang, T., Guo, Q., et al., 2019. Discrimination of rare earth element geochemistry and co-occurrence in sediment from Poyang Lake, the largest freshwater lake in China. Chemosphere 217, 851-857.

46.           Zhao, Y., Yuan, J., Babcock, L. E., Guo, Q., et al., 2019. Global Standard Stratotype-Section and Point (GSSP) for the conterminous base of the Miaolingian Series and Wuliuan Stage (Cambrian) at Balang, Jianhe, Guizhou, China. Episodes 42 (2), 165-184.

47.           Zhang, H., Fan, H., Wen, H., Ye, L., Huang, Z., Zhou, J., Guo, Q., 2019. The mixing of multi-source fluids in the Wusihe Zn–Pb ore deposit in Sichuan Province, Southwestern China. Acta Geochimica  38, 642-653.

48.           Kong, J., Guo, Q.*, et al., 2018. Contamination of heavy metals and isotopic tracing of Pb in surface and profile soils in a polluted farmland from a typical karst area in southern China. Science of The Total Environment 637-638, 1035-1045.

49.           Wei, R., Guo, Q.*, Yu, G., et al., 2018. Stable isotope fractionation during uptake and translocation of cadmium by tolerant Ricinus communis and hyperaccumulator Solanum nigrum as influenced by EDTA. Environmental Pollution 236, 634-644.

50.           Wei, L., Yue, S., Zhao, W.,Yang, W., Zhang, Y., Ren, L., Han, X., Guo, Q., Sun, Y., Wang, Z., Fu, P., 2018. Stable sulfur isotope ratios and chemical compositions of fine aerosols (PM2.5) in Beijing, China. Science of The Total Environment 633, 1156-1164.

51.           Zhu, G., Xiao, H., Guo, Q., et al., 2018. Effects of cadmium stress on growth and amino acid metabolism in two Compositae plants. Ecotoxicology and Environmental Safety 158, 300-308.

52.           Deng, Y., Ren, J., Guo, Q.*, et al., 2018. Geochemistry Characteristics of REY-Rich Sediment from Deep Sea in Western Pacific, and their Indicative significance. Acta Petrologica Sinica 34(3), 733-747.

53.           Zhu, G., Xiao, H., Guo, Q., et al., 2018. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicology and Environmental Safety 151, 266-271.

54.           Han, X., Guo, Q.*, Strauss, H., Liu, C., et al., 2017. Multiple sulfur isotope constraints on sources and formation processes of sulfate in Beijing PM2.5 aerosol. Environmental Science & Technology 51, 7794-7803.

55.           Guo, Q.*, Zhu, G., et al., 2017. Spatial variation and environmental assessment of soil organic carbon isotopes for tracing sources in a typical contaminated site. Journal of Geochemical Exploration 175, 11-17. 

56.           Guo, Q.*, Deng, Y., et al., 2017. Carbonate carbon isotope evolution of seawater across the Ediacaran–Cambrian transition: Evidence from the Keping area, Tarim Basin, North-West China. Geological Magazine 154 (6), 1244-1256.

57.           Zhu, G., Guo, Q.*, et al., 2017. Multivariate statistical and lead isotopic analyses approach to identify heavy metal sources in topsoil from the industrial zone of Beijing Capital Iron and Steel Factory. Environmental Science and Pollution Research, DOI: 10.1007/s11356-017-9055-9.

58.           Deng, Y., Ren, J., Guo, Q.*, et al., 2017. Rare earth element geochemistry characteristics of seawater and pore water from deep sea in western Pacific. Scientific Reports. www.nature.com/articles/s41598-017-16379-1.

59.           Hu, J., Liu, C. *, Guo, Q. *, et al., 2017. Characteristics, sources and ecological risk assessment of PAHs in the Songhua River Basin, Northeast China. Environmental Science and Pollution Research. DOI: 10.1007/s11356-017-9057-7.

60.           Wei, R., Guo, Q.*, et al., 2017. Chromatographic Separation of Cd from Plants via Anion Exchange Resin for Isotope Determination by Multiple Collector ICP-MS. Analytical Sciences 33, 335-341.

61.           Guo, Z.*, Guo, A., Guo, Q.*, et al., 2017. Decomposition of Dexamethasone by gamma irradiation: Kinetics, degradation mechanisms and impact on algae growth. Chemical Engineering Journal 307, 722-728.

62.           Chen, S., Guo, Z. Y., Guo, Z. B. *, Guo, Q. *, et al., 2017.  Sulfur isotopic fractionation and its implication: Sulfate formation in PM 2.5 and coal combustion under different conditionsAtmospheric Research, DOI: 10.1016/j.atmosres.2017.04.034.

63.           Wang, J., Guo, Z., Shen, X., Guo, Q., et al., 2017. Gamma irradiation-induced decomposition of sulfamethoxazole in aqueous solution: the influence of additives, biological inhibitory, and degradation mechanisms. Environmental Science and Pollution Research 24, 23658–23665.

64.           Hohl, S. V., Becker, H., Jiang, S., Ling, H., Guo, Q., Struck, U., 2017. Geochemistry of Ediacaran cap dolostones of the Yangtze Platform, South China: Implications for diagenetic modification and seawater chemistry in the aftermath of the Marinoan glaciation. Journal of the Geological Society, https://doi.org/10.1144/jgs2016-145.

65.           Guo, Z. Y., Li, J., Guo, Z. B., Guo, Q., et al., 2017. Phosphorus removal from aqueous solution in parent and aluminum-modified eggshells: thermodynamics and kinetics, adsorption mechanism, and diffusion process. Environmental Science and Pollution Research, DOI: 10.1007/s11356-017-9072-8.

66.           Liu, J., Li, S., Zhong, J., Zhu, X., Guo, Q., et al., 2017. Sulfate sources constrained by sulfur and oxygen isotopic compositions in the upper reaches of the Xijiang River, China. Acta Geochim, DOI 10.1007/s11631-017-0175-1.

67.           Guo, Q.*, Zhu, G., et al., 2016. Tracing the sources of sulfur in Beijing soil with stable sulfur isotopes. Journal of Geochemical Exploration 161, 112-118.

68.           Guo, Q.*, Deng, Y., et al., 2016. REE and trace element patterns from organic-rich rocks of the Ediacaran-Cambrian transitional interval. Gondwana Research 36, 94-106.

69.           Han, X., Guo, Q.*, Liu, C., et al., 2016. Effect of the pollution control measures on PM2.5 during the 2015 China Victory Day Parade: implication from water-soluble ions and sulfur isotope. Environmental Pollution 218, 230-241.

70.           Han, X., Guo, Q.*, Liu, C., et al., 2016. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China. Scientific Reports, www.nature.com/articles/srep29958.

71.           Tian, L., Guo, Q.*, et al., 2016. Research and application of method of oxygen isotope of inorganic phosphate in Beijing agricultural soils. Environmental Science and Pollution Research, DOI: 10.1007/s11356-016-7482-7.

72.           Zhang, H., Guo, Q.*, et al., 2016. Comparison of chelates for enhancing Ricinus communis L. phytoremediation of Cd and Pb contaminated soil. Ecotoxicology and Environmental Safety 133, 57-62.

73.           Wei, R., Guo, Q.*, et al., 2016. Fractionation of Stable Cadmium Isotopes in the Cadmium Tolerant Ricinus communis and Hyperaccumulator Solanum nigrum. Scientific Reports, DOI: 10.1038/srep24309.

74.           Zhu, G., Guo, Q.*, Chen, T., et al., 2016. Chemical and sulfur isotopic composition of precipitation in Beijing, China. Environmental Science and Pollution Research 23, 5507-5515.

75.           Rodler, A. S., Hohl, S. V., Guo, Q., Frei, R., 2016. Chromium isotope stratigraphy of Ediacaran cap dolostones, Doushantuo Formation, South China. Chemical Geology 436, 24-36.

76.           Yang J., Guo, Q. *, et al., 2016. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant. Ecotoxicology and Environmental Safety 128, 206-212.

77.           Okoli, C. P., Adewuyi, G. O., Zhang, Q., Guo, Q., 2016. QSAR aided design and development of biopolymer-1 based SPE phase for liquid chromatographic analysis of polycyclic aromatic hydrocarbons in environmental water samples. RSC Advances, DOI: 10.1039/C6RA10932B.

78.           Hu, J., Liu, C., Zhang, G., Zhang, Y., Liu, B., Guo, Q., 2016. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China. Environmental Monitoring and Assessment 188 (227), 1-12.

79.           Hohl, S., Becker, H., Herzlieb, S., Guo, Q., 2015. Multiproxy constraints on alteration and primary compositions of Ediacaran deep-water carbonate rocks, Yangtze Platform, South China. Geochimica et Cosmochimica Acta. 163, 262-278.

80.           Wang, D., Struck, U., Ling, H., Guo, Q., et al., 2015. Nitrogen isotope study of black shales during Early Cambrian on Yangtze platform, South China. Precambrian Research 267 209-226.

81.           Yang, J., Guo, Q.*, et al., 2015. Red mud (RM)-Induced Enhancement of Iron Plaque Formation Reduces Arsenic and Metal Accumulation in Two Wetland Plant Species. International Journal of Phytoremediation 18(3), 269-277.

82.           Peters, M., Guo, Q.*, et al., 2015. Geochemical and multiple stable isotope (N, O, S) investigation on tap and bottled water from Beijing, China. Journal of Geochemical Exploration 157, 36–51.

83.           Zhang, H., Guo, Q. *, et al., 2015. Subcellular Cadmium distribution and antioxidant enzymatic activities in the leaves of two castor (Ricinus communis L.) cultivars exhibit differences in Cd accumulation. Ecotoxicology and Environmental Safety 120, 184-192.

84.           Wei, R., Guo, Q.*, et al., 2015. Analytical Method for Precise Determination of Cadmium Isotopic Composition in Plant Samples using Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Methods 7, 2479 - 2487.

85.           Zhu, G., Guo, Q. *, Yang, J., Zhang, H., Wei, R., Wang, C., Peters, M., et al., 2015. Washing of heavy metals from contaminated soils from an iron and steel smelting site. Frontiers of Environmental Science & Engineering 9(4), 634-641.

86.           Yang, J., Wang, L., Li, J., Wei, D., Chen, S., Guo, Q., Ma, Y., 2015. Effects of rape straw and red mud on extractability and bioavailability of cadmium in a calcareous soil. Frontiers of Environmental Science & Engineering 9, 419-428.

87.           Okoli, C. P., Adewuyi, G. O., Zhang, Q., Zhu, G.,Wang, C., Guo, Q.*, 2015. Aqueous scavenging of polycyclic aromatic hydrocarbons using epichlorohydrin, 1,6-hexamethylene diisocyanate and 4,4-methylene diphenyl diisocyanate modified starch: pollution remediation approach. Arabian Journal of Chemistry, DOI information: 10.1016/j.arabjc.2015.06.004.

88.           Guo, Q. *, Strauss, H., Zhao, Y., Yang, X., Peng, J., Yang, Y., Deng, Y., 2014. Reconstructing marine redox conditions for the transition between Cambrian Series 2 and Cambrian Series 3, Kaili area, Yangtze Platform: Evidence from biogenic sulfur and degree of pyritization. Palaeogeogr. Palaeoclimatol. Palaeoecol. 398, 144-153.

89.           Zhang, H., Guo, Q.*, et al., 2014. Cadmium Accumulation and Tolerance of Two Castor Cultivars in Relation to Antioxidant Systems. Journal of Environmental Sciences 26, 2048-2055.

90.           Okoli, C. P., Adewuyi, G. O., Zhang, Q., Diagboya, P. D., Guo, Q. *, 2014. Mechanism of dialkyl phthalates removal from aqueous solution using <gamma>-cyclodextrin and starch based polyurethane polymer adsorbents. Carbohydrate Polymers 114, 440-449.

91.           Okoli, C. P., Guo, Q., et al., 2014. Application of quantum descriptors for predicting adsorption performance of starch and cyclodextrin adsorbents. Carbohydrate Polymers 101, 40-49.

92.           Zhao, Y., Yuan, J., Guo, Q., et al., 2014. Comments on some important issues concerning the establishment of a GSSP for Cambrian Stage 5. GFF 136(1), 333-336.

93.           Guo, Q. *, Strauss, H., Chen, T., Zhu, G., Yang, J., Lei, M., Zhou, X., Peters, M., Xie, Y., Zhang, H., Wei, R., Wang, C., 2013. Tracing the source of Beijing soil organic carbon: a carbon isotope approach. Environmental Pollution 176, 208-214.

94.           Guo, Q.*, Strauss, H., Zhu, M., et al., 2013. High resolution organic carbon isotope stratigraphy from a slope to basinal setting on the Yangtze Platform, South China: Implications for the Ediacaran – Cambrian transition. Precambrian Research 225, 209-217.

95.           Guo, Q.*, Deng, Y., Strauss, H., 2013. REE and trace element patterns across the Ediacaran-Cambrian transition, South China. Goldschmidt 2013 Conference Abstracts, 1234.

96.           Peters, M., Guo, Q. *, Strauss, H., Zhu, G., 2013. Geochemical and multiple isotope investigation on tap and river water of the Beijing urban area. Goldschmidt 2013 Conference Abstracts, 1954.

97.           Zhu, G., Guo, Q. *, Strauss, H., Peters, M., 2013. Tracing the sources of sulfur in Beijing rain water with stable isotopes. Goldschmidt2013 Conference Abstracts, 2614.

98.           Hohl, S. V., Becker, H., Herzlieb, S., Guo, Q., Gamper, A., 2013. Multi-proxy study of shallow- and deep-water Doushantuo carbonates, Yangtze Platform, South China. Goldschmidt2013 Conference Abstracts, 1311.

99.           Guo, Q. *, Deng, Y., 2012. Carbon isotopic evolution of the Late Ediacaran Gaojiashan biota on the northern Yangtze Platform, South China. Acta Geologica Sinica 86(6),1447-1454.

100.      Yang, X., Zhao, Y., Guo, Q., Yang, H., 2012. Geochemistry of the trace elements and rare-earth elements at the boundary between Cambrian Series 2 and Series 3 at Jianshan, South China: Paleoenvironmental and stratigraphic implications. Chinese Journal of Geochemistry 31(4), 465-475.

101.      Guo, Q. *, Strauss, H., Chen, T., Yang, J., Zhu, G., Liu, C., 2011. Contrasting Sulfur isotopic profiles in industrial and non-industrial Beijing soils. Applied Geochemistry 26(supp.1), S187.

102.      Xie, Y., Chen, T., Lei, M., Yang, J., Guo, Q., et al., 2011. Spatial distribution of soil heavy metal pollution estimated by different interpolation methods: Accuracy and uncertainty analysis. Chemosphere 82, 468-476.

103.      Guo, Q. *, Strauss, H., Liu, C., et al., 2010. A negative carbon isotope excursion defines the transition from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 285,143-151.

104.      Guo, Q. *, Strauss, H., Liu, C., et al., 2010. Corrigendum to “A negative carbon isotope excursion defines the boundary from Cambrian Series 2 to Cambrian Series 3 on the Yangtze Platform, South China” . Palaeogeography, Palaeoclimatology, Palaeoecology 285 (2010) 143–151. Palaeogeogr. Palaeoclimatol. Palaeoecol. 288, 118.

105.      Guo, Q. *, Strauss, H., Kaufman, A. J., Schröder, S., Gutzmer, J., Wing, B., Baker, M. A., Bekker, A., Jin, Q., Kim, S. –T., Farquhar, J., 2009. Reconstructing Earth’s surface oxidation across the Archean-Proterozoic transition. Geology 37(5), 399-402.

106.      Guo, Q. *, Strauss, H., Liu, C., et al., 2009. Sulphide sulphur and carbonate carbon isotopic evolution of the Cambrian Series 2 and 3, South China. Geochimica et Cosmochimica Acta 73, Suppl. S(13), p. A479-A479.

107.      Guo,Q. *, Shields, G., Liu, C., Strauss, H.,Goldberg, T., Pi, D., 2007. Trace element chemostratigraphy of two Ediacaran - Cambrian successions in South China: implications for organosedimentary metal enrichment and silicification in the Early Cambrian. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254,194-216.

108.      Guo, Q. *, Strauss, H., Liu, C., Goldberg, T., Zhu, M., Heubeck, C., Pi, D., Vernhet, E., Yang, X., Fu, P., 2007. Carbon isotopic evolution of the terminal Neoproterozoic and Early Cambrian: evidence from the Yangtze Platform, South China. Palaeogeogr. Palaeoclimatol. Palaeoecol.254,140-157.

109.      Guo, Q. *, Strauss H,Schroder S,Gutzmer J., 2007. The sulphur isotopic evolution of late Neoarchean and early Paleoproterozoic seawater. Geochimica Et Cosmochimica Acta 71, Suppl. S (15), A363-A363.

110.      Guo, Q. *, Liu, C., Strauss, H., Goldberg, T., Zhu, M., et al., 2006. Organic Carbon Isotope Geochemistry of the Neoproterozoic Doushantuo Formation, South China. Acta Geologica Sinica 80(5), 670-683.

111.      Guo, Q. *, Strauss, H., Liu, C., Zhao, Y., et al., 2005. Carbon and oxygen isotopic composition of Lower to Middle Cambrian sediments at Taijiang, Guizhou Province, China. Geological Magazine142(6), 723-733.

112.      Guo, Q. *, Liu, C., Strauss, H., Goldberg, T., et al., 2003. Isotopic evolution of the terminal Neoproterozoic and early Cambrian carbon cycle on the northern Yangtze Platform, South China. Progress in Natural Science 13(12), 942-945.

113.      Cremonese, L., Struck, U., Shields, G., Guo, Q., Ling, H., Och, L., 2009. delta N-15 chemostratigraphy of Ediacaran-Cambrian sections of South China. Geochimica Et Cosmochimica Acta 73 (13), A251-A251.

114.      Zhao, Y., Yuan, J, Peng, S., Loren E. B., Peng, J, Guo, Q., Lin, J., Tai, T.,Yang, R., Wang, Y., 2008. A new section of Kaili Formation (Cambrian) and a biostratigraphic study of the boundary interval across the undefined Cambrian Series 2 and Series 3 at Jianshan, Chuandong village, Jianhe County, China with a discussion of global correlation based on the first appearance datum of Oryctocephalus indicus (Reed, 1910). Progress in Natural Science 18, 1549-1556.

115.      Goldberg, T., Strauss, H., Guo, Q., Liu, C., 2007. Reconstructing marine redox conditions for the Early Cambrian Yangtze Platform: evidence from biogenic sulphur and organic carbon isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 254,175-193.

116.      Yang, X., Zhu, M., Guo, Q., Zhao, Y., 2007. Organic Carbon Isotopic Evolution during the Ediacaran-Cambrian Transition Interval in Eastern Guizhou, South China: Paleoenvironmental and Stratigraphic Implications. Acta Geologica Sinica (English Edition) 81 (2), 194-203.

117.      Fu, P., Wu, F., Liu, C., Wang, F., Li, W., Yue, L., Guo, Q., 2007. Fluorescence characterization of dissolved organic matter in an urban river and its complexation with Hg(II). Applied Geochemistry 22, 1668-1679.

118.      Zhao, Y., Yuan, J., Peng, S., Yang, X., Peng, J., Lin, J., Guo, Q., 2006. A restudy of Oryctocephalus indicus (Reed, 1910). Progress in Natural Science 16(11), 1177-1182(SCI).

119.      Zhao, Y., Yuan, J., Peng, S., Guo, Q., et al., 2004. Proposal and prospects for the global Lower-Middle Cambrian boundary. Progress in Natural Science 14(12), 1033-1038 (SCI).

120.      Goldberg, T., Strauss, H., Guo, Q., Liu, C., 2003. The late Neoproterozoic to early Cambrian sulphur cycleAn isotopic investigation of sedimentary rocks from the Yangtze Platform. Progress in Natural Science13(12)946-950 (SCI).


 


Students

已指导学生

王春雨  硕士研究生  085229-环境工程  

张晗芝  博士研究生  083001-环境科学  

魏荣菲  博士研究生  083001-环境科学  

朱光旭  博士研究生  083001-环境科学  

田丽艳  博士研究生  083001-环境科学  

韩晓昆  博士研究生  083001-环境科学  

孔静  博士研究生  083001-环境科学  

现指导学生

杨曦  博士研究生  083001-环境科学  

董鑫媛  博士研究生  083001-环境科学  

崔猛  博士研究生  083001-环境科学  

陶正华  博士研究生  070501-自然地理学  

张琦  硕士研究生  077601-环境科学  

赵长秋  博士研究生  083001-环境科学  

王子腾  博士研究生  083001-环境科学  

杜陈军  博士研究生  083001-环境科学