基本信息
王维 男 博导 过程工程研究所
电子邮件:wangwei@ipe.ac.cn
通信地址:北京海淀区中关村北二条1号
邮政编码:100190

研究领域

研究方向:
多尺度CFD,介尺度方法,流态化与多相流 

个人简介:
中科院过程所研究员,多相复杂系统国家重点实验室副主任。中国科学院大学教授。2016年获基金委杰出青年基金资助。1994毕业于四川大学,1997年获该校硕士学位,2001年中科院过程所毕业并获工学博士学位。毕业后一直从事颗粒流体系统的模拟与实验研究。提出了“三传一反”耦合过程的多尺度CFD方法,理论证明其优于传统的双流体方法并在工程模拟中得到推广应用;提出的双变元EMMS曳力模型成为国际主流CFD软件(Ansys Fluent, CPFD Barracuda VR, Siemens Star CCM+)标准模块。主持开发EMMS软件,并授权诸多国际知名研究机构使用(如美国NETL国家实验室、Alstom、CSIRO、清华大学、东南大学等)。曾主持国家自然科学基金委面上、重点项目;参与创新群体课题;主持中科院创新方向项目(化工过程模拟)、中科院战略先导专项(低阶煤清洁高效梯级利用关键技术与示范)的项目8(过程模拟放大与系统仿真集成),以及中石油、中石化、Alstom开发项目等。合作专著三本:“From Multiscale Modeling to Meso-Science”(Springer,第3作者),《变径流化床反应器理论与实践》(中国石化出版社,第4作者),"Diameter-Transformed Fluidized Bed: Fundamentals and Practice" (Springer Nature, 第5作者),受邀为Wiley出版的Handbook of Combustion、Elsevier出版丛书Advances in Chemical Engineering、化工出版社的《流态化手册》等专著撰写5章(节)。2002-2005兼任过程所团委书记。曾获中科院首届"卢嘉锡青年人才奖";化工三大期刊Chem Eng Sci最高引用作者奖;颗粒学会首届MIC-Particuology杰出论文奖、自然科学奖一等奖(第2);中国化工学会“侯德榜化工科技青年奖”、技术发明奖一等奖(第2);中国科协杰出青年(成果转化)奖; 教育部科学技术进步奖一等奖(第13);唐立新教学名师奖等。2010年发表在Int. J. Multiphase Flow的多尺度CFD综述入选"中国百篇最具影响国际学术论文";文章发表信息参见谷歌学术主页https://scholar.google.com/citations?user=eorSSw0AAAAJ&hl=en 以及ResearchGate主页https://www.researchgate.net/profile/Wei-Wang-620 


招生信息

   
招生专业
081701-化学工程
081702-化学工艺

教育背景

1997-09--2001-12 中国科学院过程工程研究所 博士
1994-09--1997-08 四川联合大学(四川大学、成都科技大学) 硕士
1990-09--1994-08 四川联合大学(四川大学、成都科技大学) 学士

工作经历

   
工作简历
2015-04~现在, 多相复杂系统国家重点实验室, 副主任
2014-03~现在, 中国科学院大学, 教授
2008-06~现在, 中国科学院过程工程研究所, 研究员
2004-12~2008-05,中国科学院过程工程研究所, 副研究员
2001-12~2004-12,中国科学院过程工程研究所, 助理研究员
社会兼职
2022-11-01-2026-10-31,中国颗粒学会理事,
2020-04-25-2021-05-08,Processes, Editorial Board
2018-01-01-今,Particuology, Executive Editor
2017-09-29-2020-05-30,Carbon Resources Conversion, Editorial Board
2017-04-30-今,过程工程学报, 编委
2017-03-15-今,中国化工学会过程模拟与仿真专业委员会, 副主任
2014-05-18-今,国际流化床技术大会advisory board,
2013-01-01-2014-10-01,第11届国际流化床技术大会秘书长,
2011-11-11-今,中国科学院青年创新促进会会员,

教授课程

Fluidization、 流态化与多相流

专利与奖励

   
奖励信息
(1) 2020年国科大“研究生优秀课程”, 研究所(学校), 2020
(2) 中国石油和化学工业优秀出版物奖-图书奖, 一等奖, 其他, 2020
(3) 中国颗粒学会自然科学奖, 一等奖, 其他, 2020
(4) 中国化工学会技术发明奖, 一等奖, 其他, 2019
(5) 唐立新教学名师奖, , 其他, 2018
(6) 科技部中青年科技创新领军人才, 部委级, 2018
(7) 朱李月华优秀教师奖, , 院级, 2017
(8) 教育部科学技术进步奖, 一等奖, 部委级, 2016
(9) 中国科协求是杰出青年成果转化奖, , 部委级, 2015
(10) 侯德榜化工科技青年奖, , 部委级, 2014
(11) MIC-Particuology Excellent Article Award, , 其他, 2012
(12) Chemical Engineering Science最佳引用作者奖, , 其他, 2012
(13) 卢嘉锡青年人才奖, , 院级, 2008
专利成果
[1] 鲁波娜, 王维, 段宏霖. 延长顶部过滤部件使用寿命的反应装置及汽油脱硫的方法. CN: CN116407870A, 2023-07-11.

[2] 陈延佩, 李庆展, 王维, 李飞, 朱仁帅. 一种基于双相机拍摄的气固两相颗粒射流4D流场的构建方法. CN: CN114677433A, 2022-06-28.

[3] 李飞, 姜勇, 葛蔚, 王维. 网格切分关系的确定方法、装置、设备和介质. CN: CN110750847B, 2021-06-15.

[4] 田于杰, 王维, 鲁波娜, 李飞, 李静海. 一种颗粒流体两相流反应器内流动参数分布的测量方法. CN: CN111238768B, 2021-02-02.

[5] 孟凡勇, 王维, 李静海. 一种循环流化床固体通量测量系统. CN: CN202403745U, 2012-08-29.

[6] 孟凡勇, 王维, 李静海. 一种循环流化床固体通量测量方法及测量系统. CN: CN102519528A, 2012-06-27.

[7] 孟凡勇, 王维, 李静海. 一种CT投影中心的自动校正方法. CN: CN101584587B, 2010-12-29.

[8] 孟凡勇, 王维, 李静海. 一种测量两相流颗粒团聚物速度及加速度的方法. CN: CN101876663A, 2010-11-03.

[9] 孟凡勇, 王维, 李静海. 一种针对多相流动系统中CT射线硬化的校正方法. CN: CN101639453A, 2010-02-03.

[10] 孟凡勇, 陈飞国, 王维, 李静海. 一种CT并行重建系统及成像方法. CN: CN101596113A, 2009-12-09.

[11] 董卫刚, 王维, 李静海. 测量颗粒流体两相流反应器内流体相组分浓度分布的方法. CN: CN101285753A, 2008-10-15.

[12] 王维, 葛蔚, 杨宁, 李静海. 一种测量颗粒流体两相流反应器内流动参数分布的方法. CN: CN1979111A, 2007-06-13.

出版信息

   
发表著作
(1) 《流态化手册》之“力学原理”, Handbook of Fluidization (Chapter on Principles of Mechanics), 化学工业出版社, 2008-01, 第 1 作者
(2) 《燃烧手册》第12章, Modeling of CFB combustion. In: Handbook of Combustion (Chapter 12), Wiley-VCH, 2010-10, 第 1 作者
(3) 《Advances in Chemical Engineering》Vol. 40, Chapter 1, Advances in Chemical Engineering (Vol. 40, Chapter 1, Meso-scale: the key to multiscale CFD simulation), Academic Press, Elsevier, 2011-01, 第 1 作者
(4) 《气固流动和反应系统的计算理论、方法与应用》第4章, Computational Gas-Solids Flows and Reacting Systems: Theory, Methods and Practice (Chapter 4), IGI Global, 2011-01, 第 3 作者
(5) 《从多尺度方法到介尺度科学》, From Multiscale Modeling to Meso-Science, Springer-Verlag, 2013-01, 第 3 作者
(6) 第11届国际循环床会议文集, Proceedings of the 11th International Conference on Fluidized Bed Technology, Chemical Industry Press, 2014-05, 第 4 作者
(7) 《Advances in Chemical Engineering》Vol. 47, Chapter 4, Advances in Chemical Engineering (Chapter 4, Vol. 47. Mesoscale modeling: beyond local equilibrium assumption for multiphase flow), Academic Press, Elsevier, 2015-12, 第 1 作者
(8) 变径流化床反应器理论与实践, 中国石化出版社, 2019-02, 第 4 作者
(9) Diameter-Transformed Fluidized Bed: Fundamentals and Practice, Springer, 2020-06, 第 5 作者

科研活动

   
科研项目
( 1 ) 煤专项项目8:过程模拟放大与系统仿真集成, 主持, 部委级, 2012-02--2016-12
( 2 ) 流态化系统连续介质模型的虚拟粒子离散方法:循环床模拟与验证, 主持, 国家级, 2012-01--2015-12
( 3 ) 多相流动反应耦合系统的动力学特征分析及模型化, 主持, 国家级, 2012-01--2016-12
( 4 ) 甲醇制丙烯过程模拟, 主持, 研究所(学校), 2013-10--2015-10
( 5 ) 气固反应系统中若干典型介尺度问题的研究, 主持, 国家级, 2014-01--2017-12
( 6 ) 流态化与多相流反应工程, 主持, 国家级, 2017-01--2021-12
( 7 ) 面向疫苗的“生物颗粒设计”和工业转化, 参与, 国家级, 2019-01--2024-12
( 8 ) 甲醇制烯烃过程介尺度机制与调控及其在新一代技术中的示范应用, 参与, 国家级, 2019-01--2021-12
( 9 ) 新一代车用汽油高端制造技术研究与开发, 参与, 院级, 2019-01--2021-12
( 10 ) 煤气化反应器的多尺度模拟方法——从微观到宏观, 参与, 国家级, 2021-01--2023-12

代表文章

Multiscale CFD

l   Geng J, Yang Z, Tian Y, Lu B, Wang W. 2023. On the differences between periodic domain and fluidized bed. Chemical Engineering Science 268:118395

l   Geng, J., Tian, Y., Wang, W.* Exploring a Unified EMMS Drag Model for Gas-Solid Fluidization. Chemical Engineering Science, 2022, 251: 117444.

l   Tian, Y.*, Geng, J., Wang, W.* On the choice of mesoscale drag markers. AIChE Journal, 2022, 68: e17558.

l   Yang, Z., Lu, B.*, Wang, W.* Coupling Artificial Neural Network with EMMS drag for simulation of dense fluidized beds. Chemical Engineering Science, 2021, 246: 117003.

l   Wang, W.*, Lu, B., Geng, J., Li, F. Mesoscale drag modeling: a critical review. Current Opinion in Chemical Engineering, 2020, 29: 96-103.

l   Tian, Y., Lu, B., Li, F., Wang, W.* A steady-state EMMS drag model for fluidized beds. Chemical Engineering Science, 2020, 219: 115616.

l   Luo, H., Lu, B., Zhang, J., Wu, H., Wang, W.*, A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization. Chemical Engineering Journal, 2017, 326: 4757.

l   Hong, K., Chen, S., Wang, W.*, Li, J. Fine-grid two-fluid modeling of fluidization of Geldart A particles. Powder Technology 2016, 296: 2-16.

l   Song, F., Wang, W.*, Hong, K., Li, J., Unification of EMMS and TFM: structure-dependent analysis of mass, momentum and energy conservation. Chemical Engineering Science, 2014, 120: 112-116.

l   Hong, K., Shi, Z., Wang, W.*, Li, J. A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow. Chemical Engineering Science, 2013, 99: 191-202.

l   Ullah, A., Wang, W.*, Li, J. Evaluation of drag models for concurrent and countercurrent gas-solid flows. Chemical Engineering Science, 2013, 92: 89-104.

l   Hong, K., Wang, W.*, Zhou, Q., Wang, J., Li, J. An EMMS-based multi-fluid model (EFM) for heterogeneous gas–solid riser flows: Part I. Formulation of structure-dependent conservation equations. Chemical Engineering Science, 2012, 75: 376-389. (Chemical Engineering Science Top Cited Papers for 2011 and 2012)

l   Wang, J., Zhou, Q., Hong, K., Wang, W., Li, J. An EMMS-based multi-fluid model (EFM) for heterogeneous gas-solid riser flows: Part II. An alternative formulation from dominant mechanisms. Chemical Engineering Science, 2012, 75: 349-358.

l   Shi, Z., Wang, W.*, Li, J. A bubble-based EMMS model for gas-solid bubbling fluidization. Chemical Engineering Science, 2011, 66: 5541-5555.

l   Ge, W., Wang, W., Yang, N., Li, J. et al. Meso-scale oriented simulation towards virtual process engineering (VPE)—The EMMS Paradigm. Chemical Engineering Science, 2011, 66: 4426-4458. (Chemical Engineering Science Top Cited Papers for 2011 and 2012)

l   Lu, B., Wang, W.*, Li, J. Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model. Chemical Engineering Science, 2011, 66: 4624-4635.

l   Syamlal, M., Guenther, C., Cugini, C., Ge, W., Wang, W., Yang, N., Li, J. Computational science: enabling technology development. Chemical Engineering Progress, 2011, 107(1): 23-29.

l   Wang, W.*, Lu, B., Zhang, N., Shi, Z., Li, J. A review of multiscale CFD for gas-solid CFB modeling. International Journal of Multiphase Flow. 2010, 36: 109-118. (Ranking one of 100 Top Scientific Articles-2010 of Chinese Scientists, ISTIC, China, in 2011) (Ranking one of most cited Int J Multiphase Flow articles since 2008 by Elsevier)

l   Lu, B., Wang, W.*, Li, J. Searching for a mesh-independent subgrid model for CFD simulation of gas solid riser flows. Chemical Engineering Science, 2009, 64: 3437-3447. (Ranking one of most cited Chem Eng Sci authors) (Ranking one of most cited Chem. Eng. Sci. articles since 2009 by Elsevier)

l   Wang, W.*, Li, J. Simulation of gas-solid two-phase flow by a multi-scale CFD approach - extension of the EMMS model to the sub-grid level. Chemical Engineering Science. 2007, 62:208-231. (Ranking one of most cited Chem Eng Sci articles since 2007 by Elsevier)

Non-equilibrium Thermodynamics

l   Tian, Y., Geng, J., Wang, W*. Structure-dependent analysis of energy dissipation in gas-solid flows: Beyond nonequilibrium thermodynamics. Chemical Engineering Science, 2017, 171: 271-281.

Granular Matter & Kinetic Theory

l   Chen, Y.*, Wang, W*. Reticulate collisional structure in boundary-driven granular gases. Physical Review E, 2019, 100: 042908.

l   Chen, Y., Mei, Y., Wang, W. Kinetic theory of binary particles with unequal mean velocities and non-equipartition energies. Physica A 2017, 469: 293-304.

Experiments and Virtual Process Techniques

l   Zhu R, Chen Y, Wang W. 2023. Particle tracking velocimetry study of the nonequilibrium characteristics of a fluidized bed. AIChE Journal 69:e18043

l   Li Q, Zhu R, Wang W, Chen Y, Li F, Furuhata T. 2023. Time-resolved particle-scale dynamics of a particle-laden jet. Physics of Fluids 35: 013309

l   Zhang C, Zhu R, Chen Y, Wang W, Furuhata T. 2023. Configuration-dependent dynamics of non-spherical particles in a gas–solid fluidized bed. Chemical Engineering Journal 465:142969

l   Wang, H., Chen, Y.*, Wang, W.* Particlelevel dynamics of clusters: Experiments in a gasfluidized bed. AIChE Journal, 2022, 68: e17525.

l   Wang, H., Chen, Y.*, Wang, W.* Scaledependent nonequilibrium features in a bubbling fluidized bed. AIChE Journal, 2018, 64: 2364-2378.

Numerical Methods

l   Song, F., Li, F., Wang, W., Li, J. A sub-grid EMMS drag for multiphase particle-in-cell simulation of fluidization. Powder Technology 2018, 327: 420-429.

l   Song, F., Wang, W.*, Li, J. A lattice Boltzmann method for particle-fluid two-phase flow. Chemical Engineering Science, 2013, 102: 442-450.

l   Deng, L, Liu, Y., Wang, W.*, Ge, W., Li, J. A two-fluid smoothed particle hydrodynamics (TF-SPH) method for gas-solid fluidization. Chemical Engineering Science, 2013, 99: 89-101.

l   Li, F., Song, F., Benyahia, S., Wang, W., Li, J. MP-PIC simulation of CFB riser with EMMS-based drag model. Chemical Engineering Science, 2012, 82: 104-113.

l   Xiong, Q., Deng, L, Wang, W.*, Ge, W. SPH method for two-fluid modeling of particle–fluid fluidization. Chemical Engineering Science, 2011, 66: 1859-1865. (Chemical Engineering Science Top Cited Papers for 2011 and 2012)

Flow Regime Transition

l   Mei, Y., Zhao, M., Lu, B., Chen, S., Wang, W*. Numerical comparison of two modes of gas-solid riser operation: Fluid catalytic cracking vs CFB combustor. Particuology, 2017, 31: 42-48.

l   Ullah, A., Wang, W.*, Li, J. “Generalized fluidization” revisited. Industrial & Engineering Chemistry Research, 2013, 52: 11319−11332.

l   Wang, W.*, Lu, B., Li, J. Choking and flow regime transitions: simulation by a multi-scale CFD approach. Chemical Engineering Science. 2007, 62: 814-819.

l   Lu, B., Wang, W.*, Li, J. et al. Multiscale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model. Chemical Engineering Science, 2007, 62: 5487-5494.

Mass Transfer and Reactive Flow

l   Zhang, C., Lu, B.*, Wang, W.*, Liu, M., Lu, C.*, Ye M. CFD simulation of an industrial MTO fluidized bed by coupling a population balance model of coke content. Chemical Engineering Journal, 2022, 446: 136849.

l   Yang L, Han C, Xu J, Lu B, Xu Y, et al. 2023. Role of mesoscale structure in gas–solid fluidization: Comparison between continuum and discrete approaches. Chemical Engineering Journal 454:139979

l   Du, C., Han, C., Yang, Z., Wu, H., Luo, H., Niedzwiecki, L., Lu, B.*, Wang, W. Multiscale CFD Simulation of an Industrial Diameter-Transformed Fluidized Bed Reactor with Artificial Neural Network Analysis of EMMS Drag Markers. Industrial & Engineering Chemistry Research, 2022, 61: 8566-8580.

l   Chen, S., Fan, Y., Kang, H., Lu, B.*, Tian, Y., Xie, G., Wang, W.*, Lu, C.* 2021. Gas-solid-liquid reactive CFD simulation of an industrial RFCC riser with investigation of feed injection. Chemical Engineering Science, 2021, 242: 116740.

l   Dong, W., Wang, W.*, Li, J. A multiscale mass transfer model for gas-solid riser flows: part 1- sub-grid model and simple tests. Chemical Engineering Science. 2008, 63: 2798-2810.

l   Dong, W., Wang, W.*, Li, J. A multiscale mass transfer model for gas-solid riser flows: part 2-sub-grid simulation of ozone decomposition. Chemical Engineering Science. 2008, 63: 2811-2823.

l   Liu, C., Wang, W.*, Zhang, N., Li, J., Structure-dependent multi-fluid model for mass transfer and reactions in gas–solid fluidized beds. Chemical Engineering Science 2015, 122: 114-129.

l   Lu, B., Luo, H., Li, H., Wang, W.*, Ye, M.*, Liu, Z., Li, J., Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model. Chemical Engineering Science 2016, 143: 341-350.

l   Lu, B., Zhang, J., Luo, H., Wang, W.*, Li, H., Ye, M.*, Liu, Z., Li, J., Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors. Chemical Engineering Science 2017, 171: 244-255.

l   Zhang, J., Lu, B., Chen, F., Li, H., Ye, M., Wang, W., Simulation of a large methanol-to-olefins fluidized bed reactor with consideration of coke distribution. Chemical Engineering Science 2018, 189: 212-220.