General

Hongzhi Kong, Professor, Institute of Botany, Chinese Academy of Sciences
Email: hzkong@ibcas.ac.cn
Telephone: 010-62836489
Address: 20 Nanxincun, Xiangshan, Beijing 100093 

Research Areas

Evolutionary Developmental Biology (Evo-Devo); Evolutionary Regulatory Genomics

Education

2000.07     Ph.D., Botany; Institute of Botany, Chinese Academy of Sciences, China

1995.07     B.S., Botany; Department of Biology, Northwest University, China

Experience

   
Work Experience

2012.11 - present     Leading Scientist (Super PI); Research Cluster for Systematics and Evo-Devo, Institute of Botany, Chinese Academy of Sciences, China
2008.07 - present     Principal Investigator (PI); Research Group for Evo-Devo and Regulatory Genomics, Institute of Botany, Chinese Academy of Sciences, China
2006.12 - present     Professor; Institute of Botany, Chinese Academy of Sciences, China
2003.10 - 2006.12    Associate Professor; Institute of Botany, Chinese Academy of Sciences, China
2006.06 - 2006.08    Advanced Visiting Scholar; Department of Biology, Pennsylvania State University, USA (collaborator: Masatoshi Nei)
2002.04 - 2004.10    Visiting Postdoctoral Scholar; Department of Biology, Pennsylvania State University, USA (collaborators: Hong Ma and Claude W. dePamphilis)
2000.08 - 2003.08    Assistant Professor; Institute of Botany, Chinese Academy of Sciences, China

Teaching Experience

  1. 2015.03—2015.05     Evolutionary developmental biology

  2. 2014-03—2014.05     Evolutionary developmental biology

  3. 2014.03—2014.05     Plant developmental biology

  4. 2014.03—2015.05     Evolutionary developmental biology

  5. 2013.03—2013.05     Frontiers in plant science

  6. 2013.03—2014.05     Evolutionary developmental biology

  7. 2013.03—2014.05     Plant developmental biology

  8. 2012.09—2013.01     Phylogeny and the Origin of Plants

  9. 2012.03—2012.05     Frontiers in plant science

  10. 2012.03—2013.05     Frontiers in plant science

Honors & Distinctions

  1. Leading talent in Science and Technological Innovation of Ten Thousand Talents Program (2016) by Organization Department of the CPC Central Committee, Ministry of Human Resources and Social Security, and China Association for Science and Technology
  2. The national excellent scientific and technological workers (2014) by China Association for Science and Technology
  3. Leadership in Scientific Innovation Award (2014) by Ministry of science and technology of the people's Republic of China
  4. China Youth Science and Technology Award (2013) by Organization Department of the CPC Central Committee, Ministry of Human Resources and Social Security, and China Association for Science and Technology
  5. Distinguished Young Scientist Award (2012) by National Science Foundation of China
  6. Winner of National Science Fund for Distinguished Young Scholars (2011)
  7. Distinguished Graduate Student Advisor Award (2011) by Chinese Academy of Sciences

Publications

   
Papers

  1. Ye L., Wang B., Zhang W., Shan, H., Kong, H.*, 2016. Gain of an auto-regulatory site led to divergence of the Arabidopsis APETALA1 and CAULIFLOWER duplicate genes in the time, space and level of expression and regulation of one paralog by the other. Plant Physiology 171:1055-1069
  2. Yu X, Duan X, Zhang R, Fu X, Ye L, Kong H, Xu G*, Shan H*, 2016. Prevalent exon-intron structural changes in the APETALA1/FRUITFULL, SEPALLATA, AGAMOUS-LIKE6, and FLOWERING LOCUS C MADS-box gene subfamilies provide new insights into their evolution. Frontiers in Plant Science 7:598
  3. Wang P., Liao H., Zhang W., Yu X., Zhang R., Shan H., Duan X., Yao X., Kong H.*, 2016. Flexibility in the structure of spiral flowers and its underlying mechanisms. Nature Plants 2:15188
  4. Li H., Meng F., Guo C., Wang Y., Xie X., Zhu T., Zhou S., Ma H., Shan H .*, Kong H.*, 2014. MeioBase: a comprehensive database for meiosis. Frontiers in Plant Science 5:728
  5. Li L., Yu X., Guo C., Duan X., Shan H., Zhang R., Xu G., Kong H.*, 2015. Interactions among proteins of floral MADS-box genes in Nuphar pumila (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower. Journal of Systematics and Evolution53:285-296
  6. AmborellaGenome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342:1241089
  7. Zhang R., Guo C., Zhang W., Wang P., Li L., Duan X., Du Q., Zhao L., Shan H., Hodges S. A., Kramer E. M., Ren Y.*, Kong H.*, 2013. Disruption of the petal identity gene APETALA3-3 is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences USA 110: 5074-5079
  8. Kahloul S., El Beji I. H. S., Boulaflous A., Ferchichi A., Kong H., Mouzeyar S.*, Bouzidi M. F., 2013. Structural, expression and interaction analysis of rice SKP1-like genes. DNA Research20: 67-78
  9. Wang B., Zhang N., Guo C., Xu G., Kong H., Shan H.*, 2012. Evolutionary divergence of the APETALA1 and CAULIFLOWER proteins. Journal of Systematics and Evolution 50: 502-511
  10. Xu G., Guo C., Shan H., Kong H.*, 2012. Divergence of duplicate genes in exon–intron structure. Proceedings of the National Academy of Sciences USA 109: 1187-1192
  11. Liu Y., Guo C., Xu G., Shan H., Kong H.*, 2011. Evolutionary pattern of the regulatory network for flower development: insights gained from a comparison of two Arabidopsis species. Journal of Systematics and Evolution 49: 528-538
  12. Sharma B., Guo C., Kong H., Kramer E.M.*, 2011. Petal-specific subfunctionalization of an APETALA3 paralog in the Ranunculales and its implications for petal evolution. New Phytologist 191: 870-83
  13. Zhang Q., Antonelli A., Feild T.S., Kong H.*, 2011. Revisiting taxonomy, morphological evolution, and fossil calibration strategies in Chloranthaceae. Journal of Systematics and Evolution 49: 315-329
  14. Li A., Xu G. Kong H.*, 2011. Mechanisms underlying copy number variation in F-box genes: evidence from comparison of 12 Drosophila species. Biodiversity Science 19: 3-16 (in Chinese, with English abstract)
  15. Liu C., Zhang J., Zhang N., Shan H., Su K., Zhang J., Meng Z., Kong H.*, Chen Z.*, 2010. Interactions among proteins of floral MADS-box genes in basal eudicots: implications for evolution of the regulatory network for flower development. Molecular Biology and Evolution 27: 1598-1611
  16. Gao X., Liang W., Yin C., Ji. S., Wang H., Su X., Guo C., Kong H., Xue H., Zhang D.*, 2010. The SEPALLATA-Like gene OsMADS34 is required for rice inflorescence and spikelet development. Plant Physiology 153: 728-740
  17. Li H., Liang W., Jia R., Yin C., Zong J., Kong H., Zhang D.*, 2009. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Research 20: 299-313
  18. Xue H., Xu G., Guo C., Shan H., Kong H.*, 2010. Comparative evolutionary analysis of MADS-box genes in Arabidopsis thaliana and A. lyrata. Biodiversity Science 18: 109-119 (in Chinese, with English abstract)
  19. Shan H., Zahn L., Guindon S., Wall P.K., Kong H., Ma H., dePamphilis C.W., Leebens-Mack J.*, 2009. Evolution of plant MADS-box transcription factors: evidence for shifts in selection associated with early angiosperm diversification and concerted gene duplications. Molecular Biology and Evolution 26: 2229-2244
  20. Wang X., Kong H., Ma H.*, 2009. F-box proteins regulate ethylene signaling and more. Genes & Development 23: 391-396
  21. Xu G., Ma H., Nei M.*, Kong H.*, 2009. Evolution of F-box genes in plants: different modes of sequence divergence and their relationships with functional diversification. Proceedings of the National Academy of Sciences USA 106: 835-840
  22. Su K., Zhao S., Shan H., Kong H., Lu W., Theissen G., Chen Z.*, Meng Z.*, 2008. The MIK region rather than the C-terminal domain of AP3-like class B floral homeotic proteins determines functional specificity in the development and evolution of petals. New Phytologist 178: 544-558
  23. Quan L., Xiao R., Li W., Oh S.-A., Kong H., Ambrose J. C., Malcos J. L., Cyr R., Twell D., Ma H.*, 2008. Functional divergence of the duplicated Arabidopsis ATK5 and ATK1 genes: critical roles in meiosis and gametophyte development. The Plant Journal 53: 1013-1026
  24. Zhu X., Chase M. W., Qiu Y., Kong H., Dilcher D. L., Li J., Chen Z.-D., 2007. Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids. BMC Evolutionary Biology 7: 217
  25. Kong H.*, Landherr L. L., Frohlich M. W., Leebens-Mack J., Ma H., dePamphilis C. W.*, 2007. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: evidence for multiple mechanisms of rapid gene birth. The Plant Journal 50: 873-885
  26. Shan H., Zhang N., Liu C., Xu G., Zhang J., Chen Z.*, Kong H.*, 2007. Patterns of gene duplication and functional diversification during the evolution of the AP1/SQUA subfamily of plant MADS-box genes. Molecular Phylogenetics and Evolution 44: 26-41
  27. Xu G., Kong H.*, 2007. Duplication and divergence of floral MADS-box genes in grasses: evidence for the generation and modification of novel regulators. Journal of Integrative Plant Biology 49 (6): 927-939
  28. Shan H., Su K., Lu W., Kong H., Chen Z.*, Meng Z.*, 2006. Conservation and divergence of candidate class B genes in Akebia trifoliata (Lardizabalaceae). Development Genes and Evolution 216 (12): 785-795
  29. Lin Z., Kong H., Nei M.*, Ma H.*, 2006. Origins and evolution of the recA/RAD51 gene family: Evidence for ancient gene duplication and symbiotic gene transfer. Proceedings of the National Academy of Sciences USA 103: 10328-10333
  30. Zahn L. M., Kong H. (equal contribution), Leebens-Mack J. H., Kim S., Soltis P. S., Landherr L. L., Soltis D. E., dePamphilis C. W., Ma H.*, 2005. The Evolution of the SEPALLATA subfamily of MADS-box genes: A pre-angiosperm origin with multiple duplications throughout angiosperm history. Genetics 169: 2209-2223
  31. Kim S., Koh J., Yoo M.-J., Kong H., Hu Y., Ma H., Soltis P. S., Soltis D. E.*, 2005. Expression of floral MADS-box genes in basal angiosperms: Implication for the evolution of floral regulators. The Plant Journal 43: 724-744
  32. Li G., Meng Z.*, Kong H., Chen Z., Theissen G., Lu A.*, 2005. Characterization of candidate class A, B, and E floral homeotic gene from the perianthless basal angiosperm Chloranthus spicatus (Chloranthaceae). Development Genes and Evolution 215 (9): 437-449
  33. Soltis D. E.*, Albert V. A., Kim S., Yoo M.-J. , Soltis P. S., Frohlich M. W., Leebens-Mack J., Kong H., Wall K., Ma H., dePamphilis C.W. 2005. Evolution of the Flower. In Diversity and Evolution of Plants, Ed. R. Henry. CABI Publishers pp. 165-200
  34. Wang G., Kong H. (equal contribution), Sun Y., Zhang X., Zhang W., Altman N., dePamphilis C. W., Ma H.*, 2004. Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiology 135: 1084-1099
  35. Kong H., Leebens-Mack J., Ni W., dePamphilis C. W., Ma H.*, 2004. Highly heterogeneous rates of evolution in theSKP1gene family in plants and animals: Functional and evolutionary implications. Molecular Biology and Evolution 21: 117-128
  36. Li G., Meng Z.*, Kong H., Chen Z., Lu A., 2003. ABC model and floral evolution. Chinese Science Bulletin 48 (23): 2415-2421 (in Chinese); 48 (24): 2651-2657
  37. Zhang F., Kong H., Ge S.*, 2003. Allozyme variation and population differentiation of the Aconitum delavayi complex in the Hengduan Mountains of China. Biochemical Genetics 41: 47-55
  38. Kong H.*, Chen Z., Lu A., 2002. Phylogenetic relationships within Chloranthus Sw. (Chloranthaceae) based on nuclear ITS and plastid trnL-F sequence data. American Journal of Botany 89 (6): 940-946
  39. Kong H.*, Lu A., Endress P. K., 2002. Floral organogenesis of Chloranthus sessilifolius K. F. Wu (Chloranthaceae) with special emphasis on the morphological nature of the androecium of Chloranthus Sw. Plant Systematics and Evolution 232: 181-188
  40. Kong H., 2001. Comparative morphology of leaf epidermis in the Chloranthaceae. Botanical Journal of the Linnean Society 136: 279-294
  41. Kong H., 2000. Karyotypes of Sarcandra Gardn. and Chloranthus Sw. (Chloranthaceae) from China. Botanical Journal of the Linnean Society 133: 327-342
  42. Kong H., Chen Z., 2000. Phylogeny in Chloranthus Swartz (Chloranthaceae) inferred from sequence analysis of nrDNA ITS region. Acta Botanica Sinica 42 (7): 762-764
  43. Kong H., 2000. Taxonomic notes on Chloranthus henryi Hemsl. and its allies. Acta Phytotaxonomica Sinica 38 (4): 355-365
  44. Kong H.*, Liu J., 1999. Karyomorphology of the genus Pomatosace Maxim. (Primulaceae). Acta Phytotaxonomica Sinica 37 (5): 445-450
  45. Kong H., Yang Q.*, 1997. Karyomorphology and relationships of the genus Circaeaster Maxim. Acta Phytotaxonomica Sinica 35 (6): 494-499

Research Interests

Molecular mechanisms underlying the diversification of flowers

Evolution of genes involved in flower development

Speciation and adaptive evolution

Conferences

  1. Ranunculaceae and the evo-devo of the flower   2016全国植物生物学大会   2016-10-09
  2. Ranunculaceae and the evo-devo of the flower   2016全国系统与进化植物学研讨会暨第十二届青年学术研讨会   2016-09-09
  3. Nigellaas a new model system for the study of plant development evolution   基因组-表型组架桥分析全国研讨会   2016-08-21
  4. Nigellaas a new model for the study of plant developmental evolution   第十二届全国植物结构与生殖生物学学术研讨会   2016-08-01
  5. 花起源和多样化的分子机制研究   第一届进化遗传青年科学家论坛   2016-07-15
  6. Nigellaas a new model system for the study of plant developmental evolution   37th New Phytologist Symposium: Plant Developmental Evolution   2016-05-15
  7. Floral organ identity determination inNigella damascena(Ranunculaceae), a species with spiral flowers   The 4th International Symposium on Plant Reproductive Development   2015-08-03
  8. 花器官身份决定:机制与进化   2014全国系统与进化植物学研讨会暨第十一届青年学术研讨会   2014-11-07
  9. Floral Organ Identity Determination: Mechanism and Evolution   The Symposium of Genomics and Plant Evolution   2014-10-13
  10. Divergence of Duplicate Genes in Exon-intron Structure   18th Evolutionary Biology Meeting   2014-09-15
  11. 毛茛科中花瓣缺失的分子机制研究   第十一届全国植物结构与生殖生物学学术研讨会   2014-07-21
  12. Parallel petal losses within the buttercup family (Ranunculaceae) and their underlying mechanisms   XIV Congress of the European Society for Evolutionary Biology (ESEB 2013)   2013-08-19


Students

已指导学生

张宁  博士研究生  071001-植物学  

贾瑞冬  博士研究生  071001-植物学  

刘杨  博士研究生  071001-植物学  

李安  硕士研究生  071001-植物学  

王斌  博士研究生  071001-植物学  

张强  博士研究生  071001-植物学  

徐桂霞  博士研究生  071001-植物学  

张睿  博士研究生  071001-植物学  

国春策  博士研究生  071001-植物学  

张文根  博士研究生  071001-植物学  

王培培  博士研究生  071001-植物学  

李琳  博士研究生  071001-植物学  

孟凡锐  硕士研究生  071001-植物学  

戴军  硕士研究生  071001-植物学  

李浩  博士研究生  071001-植物学  

余显显  博士研究生  071001-植物学  

现指导学生

段晓姗  博士研究生  071001-植物学  

廖虹  博士研究生  071001-植物学  

蒋永超  博士研究生  071001-植物学  

叶玲玲  博士研究生  071001-植物学  

傅学浩  硕士研究生  071001-植物学  

姚序  博士研究生  071001-植物学  

袁毅  硕士研究生  071001-植物学  

程劼  博士研究生  071001-植物学  

谢京合  博士研究生  071001-植物学  

赵彩耀  博士研究生  071001-植物学  

徐永欣  硕士研究生  071001-植物学  

孙雨哲   博士研究生  071001-植物学  

武生聃  博士研究生  071001-植物学  

Grants

  1. The Molecular Mechanisms and Additive Effects of New Character Origination: A Study on the Elaboration of Nigella Petals; National Natural Science Foundation of China; 2017.01- 2020.12, 2.75 Million CNY
  2. Adaptive Evolution of Petal Shapes within the Ranunculaceae and Its Underlying Mechanisms; National Natural Science Foundation of China; 2014.01-2018.12, 3.2 Million CNY
  3. Eco-Evo-Devo and Genomics innovation team of the Chinese Academy of Sciences; 2013.01-2015.12, 1.0 Million CNY
  4. Plant Evolution and Development; National Science Fund for Distinguished Young Scholars; 2012.01-2015.12, 2.0 Million CNY
  5. Conservation and Diversification of Meiosis; National Basic Research Program of China; 2011.01-2015.08, 4.28 Million CNY
  6. Origin and adaptive evolution of AP2 and F-box genes; National Natural Science Foundation of China; 2010.01-2014.12, 250.0 Thousand CNY
  7. Divergence of Duplicate Genes in Coding Regions: Mechanisms and Contributions to Evolution. National Natural Science Foundation of China, 2010.01-2012.12, 350.0 Thousand CNY
  8. Evolution of the Regulatory Network for Floral Development; National Basic Research Program of China; 2009.01-2013.08, 785.0 Thousand CNY
  9. Genetic and Molecular Mechanisms Underlying the Development and Evolution of the Flower; Knowledge Innovation Program of the Chinese Academy of Sciences; 2007.01-2010.12, 1.0 Million CNY
  10. Evolutionary Developmental Biology (Evo-devo) of the flowers in basal eudicots; IBCAS Grant for Scientific Frontiers; 2006.01-2008.12, 1.0 Million CNY
  11. Evolution of A-, B-, C-, and E-Classes of Plant MADS-box Genes from Basal Eudicots; National Natural Science Foundation of China; 2006.01-2009.12, 1.6 Million CNY
  12. Functional and Evolutionary Study of Five MADS-box Genes from Chloranthus spicatus (Chloranthaceae); National Natural Science Foundation of China; 2005.01-2007.12, 210.0 Thousand CNY
  13. Development and Evolution of the Simplest Flowers in Angiosperms; National Natural Science Foundation of China; 2002.01-2002.12, 150.0 Thousand CNY
  14. Phylogeny and Molecular Biogeography of the Chloranthaceae; National Natural Science Foundation of China; 2002.01-2004.12, 190.0 Thousand CNY