基本信息
张海涛  男  博导  中国科学院过程工程研究所
电子邮件: htzhang@ipe.ac.cn
通信地址: 北京市海淀区中关村北二条1号过程大厦
邮政编码: 100190

研究领域

新能源材料、器件与系统;

储能技术;

输运机制与调控方法。

招生信息

招收有化学、化工和材料背景的研究生从事能源存贮和转换的研究
招生专业
081701-化学工程
081704-应用化学
080502-材料学
招生方向
能源材料,规模储能
储能技术
离子输运机制与调控方法

教育背景

2000-09--2006-07   中国科学技术大学   博士
1996-09--2000-07   中南大学   本科

工作经历

   
工作简历
2011-12~现在, 中国科学院过程工程研究所, 研究员
2011-01~2011-12,新加坡国立大学, 博士后研究员
2009-02~2010-12,日本国立材料研究所, 博士后研究员
2006-07~2009-01,新加坡国立大学, 博士后研究员

专利与奖励

   
专利成果
[1] 张锁江, 邢盛洲, 张海涛, 蔡迎军, 蒋丹枫. 利用三元前驱体废料再生梯度元素富锰三元前驱体的方法. 202210898666.8, 2022-09-07.

[2] 张海涛, 曹相斌, 申长洁, 蔡迎军. 一种废旧电池负极石墨的回收再生方法. 202210893005.6, 2022-07-27.

[3] 董陶, 沙一凡, 张锁江, 张海涛. 一种含有离子液体交联剂的高电导率半互穿聚合物电解质. CN202210087571.8, 2022-05-13.

[4] 张海涛, 申长洁, 张锁江, 刘艳侠, 曹相斌, 马立彬, 邢盛洲. 一种废旧磷酸铁锂粉的回收装置. CN: CN215600433U, 2022-01-21.

[5] 张锁江, 张海涛, 邢盛洲, 李晶晶, 马立彬, 曹相斌, 申长洁, 张群斌. 一种磷酸铁锂正极粉有价金属锂元素连续浸出装置. CN: CN215593156U, 2022-01-21.

[6] 张锁江, 张海涛, 达昊然, 张家赫. 一种退役电池负极片剥离和石墨深度除杂方法及设备. CN: CN111792642B, 2021-12-21.

[7] 张海涛, 张群斌, 王道广, 李晶晶, 刘艳侠, 曹相斌. 一种利用超声空化法的电解液回收装置及方法. CN: CN113555616A, 2021-10-26.

[8] 张海涛, 杨立鹏, 张锁江. 一种三明治结构的有机锂离子液流电池隔膜及其制备方法. CN: CN113540488A, 2021-10-22.

[9] 张海涛, 马立彬, 刘艳侠, 申长洁, 曹相斌, 邢胜洲, 张锁江. 一种废旧磷酸铁锂电池正极材料的回收再生方法. CN: CN113501510A, 2021-10-15.

[10] 张海涛, 曹相斌, 王道广, 申长洁, 马立彬, 邢盛洲, 刘艳侠. 一种退役电池正极极片剥离和浸出的方法与装置. CN: CN113502398A, 2021-10-15.

[11] 张海涛, 李晶晶, 张群斌, 曹相斌, 邢盛洲, 马立彬, 申长洁. 一种退役锂离子电池电解液的无害化处理方法. CN: CN113363610A, 2021-09-07.

[12] 张海涛, 申长洁, 曹相斌, 马立彬, 李晶晶, 张群斌, 邢盛洲. 一种回收废旧磷酸铁锂粉的方法. CN: CN113023703A, 2021-06-25.

[13] 张海涛, 张群斌, 刘艳侠, 李晶晶, 马立彬, 曹相斌. 一种废旧锂离子电池电解液回收装置. CN: CN213304221U, 2021-05-28.

[14] 张海涛, 赵永锋, 张锁江. 一种电解液和锂离子电池. CN: CN112786966A, 2021-05-11.

[15] 张兰, 巫湘坤, 钱伟伟, 彭琳珊, 张海涛, 张锁江. 一种高固含量半固态电极,其制备方法及包含该电极的锂浆料液流电池. CN: CN111313023B, 2021-05-04.

[16] 张海涛, 马立彬, 刘艳侠, 李晶晶, 申长洁, 张锁江. 三元正极材料短流程回收再生方法、回收材料及应用. CN: CN112467241A, 2021-03-09.

[17] 张海涛, 马立彬, 刘艳侠, 曹相斌, 张群斌, 张锁江. 从废旧磷酸铁锂电池中回收磷、铁和锂的方法. CN: CN112331949A, 2021-02-05.

[18] 张锁江, 达昊然, 张海涛, 蒋丹枫, 邢春贤. 一种废旧电池负极回收退役石墨深度除杂方法. CN: CN112320794A, 2021-02-05.

[19] 张锁江, 柴丰涛, 李晶晶, 马立彬, 张鹏飞, 刘艳侠, 张海涛. 一种退役动力三元锂电池回收示范工艺方法. CN: CN110783658B, 2021-01-29.

[20] 张海涛, 苏沛沛, 毕净净, 张锁江. 一种锂离子液流电池正极材料及其浆料的制备方法. CN: CN111816885A, 2020-10-23.

[21] 刘艳侠, 张鹏飞, 张海涛, 李晶晶, 马立彬, 张锁江. 废旧锂离子电池电解液中六氟磷酸锂无害化利用方法. CN: CN111704151A, 2020-09-25.

[22] 董陶, 郑鸿帅, 郑硕航, 沙一凡, 张海涛, 张锁江. 一种利用功能化离子液体选择性萃取废旧三元电池中锂的方法. CN: CN111187911A, 2020-05-22.

[23] 张海涛, 毕净净, 张锁江. 一种从废旧锂离子电池负极材料中回收锂的方法. CN: CN110668473A, 2020-01-10.

[24] 张海涛, 邢春贤, 张锁江. 一种绿色废旧锂离子电池电解液回收系统及方法. CN: CN110289457A, 2019-09-27.

[25] 张海涛, 邢春贤, 张锁江. 一种离子液体包覆废旧动力电池人造石墨材料的再生方法. CN: CN110265743A, 2019-09-20.

[26] 张锁江, 苏沛沛, 张兰, 张香平, 张海涛, 钱伟伟, 陈申. 一种具有温度探测功能的可视化液流电池反应器. CN: CN209249591U, 2019-08-13.

[27] 张锁江, 张兰, 巫湘坤, 詹秋设, 张海涛. 一种电解液以及使用它的锂硫电池及其制备方法和应用. CN: CN109346770A, 2019-02-15.

[28] 张锁江, 张兰, 吕玉苗, 张海涛. 一种电解液以及使用它的锂离子电池及其制备方法和应用. CN: CN109244541A, 2019-01-18.

[29] 张海涛, 张锁江. 一种三元聚离子液体基固态电解质的制备方法及应用. CN: CN108899212A, 2018-11-27.

[30] 邱昭政, 易先文, 梁庆生, 孙云龙, 徐建兵, 谢双. 一种废旧锂离子电池电解液回收装置. CN: CN207753130U, 2018-08-21.

[31] 张海涛, 赵永锋, 张锁江. 一种电解液和锂离子电池. CN: CN108183260A, 2018-06-19.

[32] 张海涛, 刘奥, 张锁江. 碳修饰铌酸钛材料的制备方法、碳修饰铌酸钛材料、锂离子电容器及其负极浆料. CN: CN108183039A, 2018-06-19.

[33] 张海涛, 刘奥, 宋贤丽, 张锁江. 一种用于高压固态锂离子电容器不同纳米碳改性的二氧化钛复合材料及其制备方法. CN: CN107680825A, 2018-02-09.

[34] 张兰, 石朝辉, 张晓妍, 张海涛, 张锁江. 纳米结构锂电池电解液添加剂、其制备方法和电解液. CN: CN107528089A, 2017-12-29.

[35] 赵国英, 王傲运, 张锁江, 张海涛. 一种酸性聚合离子液体及其制备方法和应用. CN: CN106916237A, 2017-07-04.

[36] 张海涛, 张锁江. 一种在线X射线荧光光谱分析系统. CN: CN106908466A, 2017-06-30.

[37] 张海涛, 焦玉志, 刘奥, 宋贤丽, 张锁江. 一种高压固态锂离子电容器. CN: CN106876146A, 2017-06-20.

[38] 赵国英, 王留阳, 张锁江, 王傲运, 张海涛. 一种金刚烷基离子液体助催化生产烷基化汽油的方法. CN: CN106635141A, 2017-05-10.

[39] 张锁江, 张海涛, 袁培. 离子液体电输运性质高精度测量装置及用其测量磁电阻效应的方法. CN: CN104849594A, 2015-08-19.

[40] 张锁江, 张军玲, 陈仕谋, 董坤, 张海涛, 朗海燕, 高洁. 一种离子液体中低温下直接电解制备晶体硅的方法. CN: CN104746130A, 2015-07-01.

[41] 张海涛, 申鹏, 刘鹤, 袁培, 石小宁, 张锁江. 一种层层(LBL)自组装制备磁性固体酸催化剂的方法. CN: CN104475081A, 2015-04-01.

[42] 张海涛, 申鹏, 张锁江. 一种多孔四氧化三铁吸附材料的溶剂热制备方法. CN: CN104437345A, 2015-03-25.

[43] 赵国英, 邢学奇, 李海方, 张海涛. 一种氯镓酸离子液体催化制备烷基化油的方法. CN: CN102703112A, 2012-10-03.

出版信息

   
发表论文
[1] Jiaxin Liu, Tao Dong, Xuedi Yuan, Yingyue Cui, Yawei Liu, Chao Chen, Hongyun Ma, Chang Su, Haitao Zhang, Suojiang Zhang. Exceptional Li-Rich Mn-Based Cathodes Enabled by Robust Interphase and Modulated Solvation Microstructures Via Anion Synergistic Strategy. Advanced Energy Materials[J]. 2023, 2300680-, [2] Qinqin Ruan, Haitao Zhang. Robust AlF3-rich SEI and multiple ion transport pathways enabled by a gradient "Ceramic-in-Ionogel" electrolyte for ultra-stable lithium metal batteries. Nano Energy[J]. 2023, 113: 108571-108578, https://pdf.sciencedirectassets.com/280655/1-s2.0-S2211285523X0007X/1-s2.0-S2211285523004081/main.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEPf%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJHMEUCIHK2SjY1uCqz3exhGB9iYX9OSHTpdvjGApePIKcYu5yKAiEAhRkVdT03Ji6VXC80D26lUFIHC0m5RX6Amd1EzSj4n80qsgUIQBAFGgwwNTkwMDM1NDY4NjUiDM8TloJuDnNpFpOw%2FSqPBc7zqbMQykCwwrJxCcVyNOjJ1xT59t7RC%2BAouiwHyUX77y29%2BcyRTIVN1MRa%2FuRNBqa1UGtxBEIj7wHmTrp1RZZaendMC4UMXPs62bllaq71gW0lsg8JdAYVVJxhMOOpexk0l%2FifC%2B9kGZDH0HIUxOtbkiLvcEfNvjhtCMnZhN3Pqie9rwjQ9Po4Y1trjt2vDnu58KJx5dxmMNuxQ9MsRo%2Bus%2BEtQdZOvW6kI67m6i0g%2BTnmrzj4Jy9mPC4OxjVjwrn0d%2FGIpA5YkpnN4XsSZmxJ37vi6kJ3Qo4mAKnzLCtxuPuaDEezj3o53gUMoW%2B5kVxfOlwZhRKO4ThLg63VrnysJSGwg9XgdPCfuTYZCqXpv2uarvxlTAmZeJ3T7TUCHIdCY6FXnh5EPTA5aU74ITrm7ghVMI7MUTlLHHcUPIhtfcRd1VC%2BLmeI%2FUHqUoE1sWdHyOcXv83S%2Ba2mrr47B8x3vwfyhAFqXZ%2F5kP0LyOraqy1uGTkmpHf4DWKJzY4skxV0X%2FTM4nqWMR5CbF9tjo8uJ%2Bh77uw2ZvrUMf48PUrq9rhqlEeoEUhxKKtY9%2B2uKPlohS%2BhzIGfmpZL%2F%2BWgj8UmWvHC25rwkZcaKA3kwL40ZX1mvvjhg573yyqlV57sozGLmd0DBWsGgn%2Bjn%2BWs6f%2FsqBg2riKUYb31bU6AOBKNymAFdTAjleVHXY5TnPUM8hd7dIE4LZiNHOV0ZXpbh9Q%2BrM2U%2BbZE8RrkhazsBc78R9kzCd1g7TBszvJ0Pu7FFV%2FJsPmTJlT%2BPvkaDYOuwnmY7pbaIswCWX0WAPlEN8F3DAHIFzDB644ROpIZv1QVugMpas0YrpxTZ3JxnjHkeh1gbfiSgxQriQJqp65bPv0w2qv7owY6sQHTofgXe3xVoyZQ%2Fqkn5EalPcJd3ud17l%2FIoH8rOQNaH2TpHhUUL1EVHIOIH32TyjANUWccrFysv7q7njNUKy5QbGwjPsmtt9%2Bl8QrZvZDK4rxGHpeoMpYv6WgeVfWKDVIXv%2B5iLtPWSGpO0%2Fm%2BcJ01H5vj2sypUskdXrp%2BvvINbHf%2FHCU8Z7O6O6RjEGaCj6Tg3AieR8AlvwybBFATF5cV3nGTq5Jsg5%2B%2BNkWy7FGBTlk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20230606T070628Z&X-Amz-SignedHeaders=host&X-Amz-Expires=299&X-Amz-Credential=ASIAQ3PHCVTYQ4TUVVWJ%2F20230606%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=5c315beccf74d20b06668e4efdfe3b56cc1b12ebeaa0ecae49330f759222761c&hash=8dd97155b7de280768be31d60240d144e037aa107ef2bf274774ac6904b8c7b7&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S2211285523004081&tid=spdf-09f36a1c-54d9-4ec1-a860-50c6e43f00c7&sid=847c1c284ebbf54d8039e161159830e6770egxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=15075100570b05555751&rr=7d2ed0144eb72d62&cc=se.
[3] Jiaqi Huang, Haitao Zhang, Xuedi Yuan, Yifan Sha, Jin Li, Tao Dong, Yuting Song, Suojiang Zhang. Regulating robust interphase using a functional ionic liquid additive with bi-electrode affinity to stabilize the high-voltage lithium-rich lithium metals batteries. CHEMICAL ENGINEERING JOURNAL[J]. 2023, 464: http://dx.doi.org/10.1016/j.cej.2023.142578.
[4] Yao, Meng, Ruan, Qinqin, Wang, Yangyang, Du, Liyu, Li, Qiongguang, Xu, Lv, Wang, Ruji, Zhang, Haitao. A Robust Dual-Polymer@Inorganic Networks Composite Polymer Electrolyte Toward Ultra-Long-Life and High-Voltage Li/Li-Rich Metal Battery. ADVANCED FUNCTIONAL MATERIALS. 2023, http://dx.doi.org/10.1002/adfm.202213702.
[5] Ruan, Qinqin, Yao, Meng, Lu, Junfeng, Wang, YanLei, Kong, Jing, Zhang, Haitao, Zhang, Suojiang. Mortise-tenon joints reinforced Janus composite solid-state electrolyte with fast kinetics for high-voltage lithium metal battery. ENERGY STORAGE MATERIALS[J]. 2023, 54: 294-303, http://dx.doi.org/10.1016/j.ensm.2022.10.037.
[6] 张海涛. Gel Electrolytes: Chemistry and Applications. Chemistry – An Asian Journal[J]. 2023, 18: e202300360-e202300361, https://www.deepdyve.com/lp/wiley/gel-electrolytes-chemistry-and-applications-c1AyamNTpE.
[7] Haoran Da, Shanshan Pan, Jin Li, Jiaqi Huang, Xuedi Yuan, Haotian Dong, Jiaxin Liu, Haitao Zhang. Greatly recovered electrochemical performances of regenerated graphite anode enabled by an artificial PMMA solid electrolyte interphase layer. ENERGY STORAGE MATERIALS. 2023, 56: 457-467, http://dx.doi.org/10.1016/j.ensm.2023.01.038.
[8] Xuedi Yuan, Tao Dong, Jiaxin Liu, Yingyue Cui, Haotian Dong, Du Yuan, Haitao Zhang. Bi-affinity Electrolyte Optimizing High-Voltage Lithium-Rich Manganese Oxide Battery via Interface Modulation Strategy. Angewandte Chemie International Edition[J]. 2023, e202304121-, [9] Yao, Meng, Ruan, Qinqin, Pan, Shanshan, Zhang, Haitao, Zhang, Suojiang. An Ultrathin Asymmetric Solid Polymer Electrolyte with Intensified Ion Transport Regulated by Biomimetic Channels Enabling Wide-Temperature High-Voltage Lithium-Metal Battery. ADVANCED ENERGY MATERIALS. 2023, http://dx.doi.org/10.1002/aenm.202203640.
[10] 张群斌, 董陶, 李晶晶, 刘艳侠, 张海涛. 废旧电池电解液回收及高值化利用研发进展. 储能科学与技术[J]. 2022, 11(9): 2798-2810, http://lib.cqvip.com/Qikan/Article/Detail?id=7107866262.
[11] Yao, Meng, Ruan, Qinqin, Yu, Tianhao, Zhang, Haitao, Zhang, Suojiang. Solid polymer electrolyte with in-situ generated fast Li+ conducting network enable high voltage and dendrite-free lithium metal battery. ENERGY STORAGE MATERIALS[J]. 2022, 44: 93-103, http://dx.doi.org/10.1016/j.ensm.2021.10.009.
[12] Cai, Yingjun, Xu, Tinghua, Meng, Xianglei, von Solms, Nicolas, Zhang, Haitao, Thomsen, Kaj. Formation of robust CEI film on high voltage LiNi0.6Co0.2Mn0.2O2 cathode enabled by functional PIVMTFSA ionic liquid additive. ELECTROCHIMICA ACTA[J]. 2022, 424: http://dx.doi.org/10.1016/j.electacta.2022.140679.
[13] Zheng, Hongshuai, Dong, Tao, Sha, Yifan, Jiang, Danfeng, Zhang, Haitao, Zhang, Suojiang. Selective Extraction of Lithium from Spent Lithium Batteries by Functional Ionic Liquid. ACS SUSTAINABLE CHEMISTRY & ENGINEERING[J]. 2021, 9(20): 7022-7029, http://dx.doi.org/10.1021/acssuschemeng.1c00718.
[14] Zhang, Qipeng, Pan, Kecheng, Jia, Mengmin, Zhang, Xiaoyan, Zhang, Lan, Zhang, Haitao, Zhang, Suojiang. Ionic liquid additive stabilized cathode/electrolyte interface in LiCoO2 based solid-state lithium metal batteries. ELECTROCHIMICA ACTA[J]. 2021, 368: http://dx.doi.org/10.1016/j.electacta.2020.137593.
[15] Li, Bosen, Xing, Chunxian, Zhang, Haitao, Hu, Lei, Zhang, Jiahe, Jiang, Danfeng, Su, Peipei, Zhang, Suojiang. Kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. CHEMICAL ENGINEERING JOURNAL[J]. 2021, 421: http://dx.doi.org/10.1016/j.cej.2020.127832.
[16] Zhang, Fengjie, Zhang, Haitao. Applications of nanocarbons in redox flow batteries. NEW CARBON MATERIALS[J]. 2021, 36(1): 82-91, http://dx.doi.org/10.1016/S1872-5805(21)60006-9.
[17] Zhang, Lan, Wu, Xiangkun, Qian, Weiwei, Zhang, Haitao, Zhang, Suojiang. Lithium slurry flow cell, a promising device for the future energy storage. GREEN ENERGY & ENVIRONMENT[J]. 2021, 6(1): 5-8, http://dx.doi.org/10.1016/j.gee.2020.09.012.
[18] Xu, Chenxuan, Yang, Guang, Wu, Daxiong, Yao, Meng, Xing, Chunxian, Zhang, Jiahe, Zhang, Haitao, Li, Fang, Feng, Yuezhan, Qi, Shihan, Zhuo, Ming, Ma, Jianmin. Roadmap on Ionic Liquid Electrolytes for Energy Storage Devices. CHEMISTRY-AN ASIAN JOURNALnull. 2021, 16(6): 549-562, http://dx.doi.org/10.1002/asia.202001414.
[19] 张海涛. Intensified energy storage in high-voltage nanohybrid supercapacitors via the efficient coupling between TiNb2O7/holey-rGO nanoarchitectures and formulated ionic liquid electrolytes. ACS Applied Materials & Interfaces. 2021, [20] Song, Xianli, Zhang, Haitao, Jiang, Danfeng, Yang, Lipeng, Zhang, Jiahe, Yao, Meng, Ji, Xiaoyan, Wang, Gongying, Zhang, Suojiang. Enhanced transport and favorable distribution of Li-ion in a poly(ionic liquid) based electrolyte facilitated by Li1.3Al0.3Ti1.7(PO4 )(3) nanoparticles for highly-safe lithium metal batteries. ELECTROCHIMICA ACTA[J]. 2021, 368: http://dx.doi.org/10.1016/j.electacta.2020.137581.
[21] 张海涛. Comprehensive kinetic-matching between electrodes and electrolyte enabling solid-state sodium-ion capacitors with improved voltage output and ultra-long cyclability. Chemical Engineering Journal. 2021, [22] Yao, Meng, Zhang, Haitao, Dong, Kun, Li, Bosen, Xing, Chunxian, Dang, Manyu, Zhang, Suojiang. Ultralong cycling and wide temperature range of lithium metal batteries enabled by solid polymer electrolytes interpenetrated with a poly(liquid crystal) network. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2021, 9(10): 6232-6241, http://dx.doi.org/10.1039/d0ta10932k.
[23] Yifan Sha, Tianhao Yu, Tao Dong, Xing-long Wu, Haoyu Tao, Haitao Zhang. In Situ Network Electrolyte Based on a Functional Polymerized Ionic Liquid with High Conductivity toward Lithium Metal Batteries. ACS APPLIED ENERGY MATERIALS[J]. 2021, 4(12): 14755-14765, [24] Yao, Meng, Zhang, Haitao, Xing, Chunxian, Li, Qiongguang, Tang, Yujie, Zhang, Fengjie, Yang, Kun, Zhang, Suojiang. Rational design of biomimetic ant-nest solid polymer electrolyte for high-voltage Li-metal battery with robust mechanical and electrochemical performance. ENERGY STORAGE MATERIALS[J]. 2021, 41: 51-60, http://dx.doi.org/10.1016/j.ensm.2021.05.049.
[25] Liu, Ao, Zhang, Haitao, Xing, Chunxian, Wang, Yanlei, Zhang, Junwei, Zhang, Xixiang, Zhang, Suojiang. Intensified Energy Storage in High-Voltage Nanohybrid Supercapacitors via the Efficient Coupling between TiNb2O7/Holey-rGO Nanoarchitectures and Ionic Liquid-Based Electrolytes. ACS APPLIED MATERIALS & INTERFACES[J]. 2021, 13(18): 21349-21361, http://dx.doi.org/10.1021/acsami.1c03266.
[26] Pan, Kecheng, Zhang, Lan, Qian, Weiwei, Wu, Xiangkun, Dong, Kun, Zhang, Haitao, Zhang, Suojiang. A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries. ADVANCED MATERIALS[J]. 2020, 32(17): https://www.webofscience.com/wos/woscc/full-record/WOS:000530300000006.
[27] Yuan, Du, Chen, Gen, Jia, Chuankun, Zhang, Haitao. Editorial: Deep Eutectic Solvents/Complex Salts-Based Electrolyte for Next Generation Rechargeable Batteries. FRONTIERS IN CHEMISTRY[J]. 2020, 8: https://doaj.org/article/53c4f31bb0bf4b4eb63acc26c8e592d4.
[28] 张家赫, 邢春贤, 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响. 过程工程学报[J]. 2020, 20(3): 354-, http://lib.cqvip.com/Qikan/Article/Detail?id=7101653037.
[29] Cai, Yingjun, Xu, Tinghua, von Solms, Nicolas, Zhang, Haitao, Thomsen, Kaj. Multifunctional imidazolium-based ionic liquid as additive for silicon/carbon lithium ion batteries. ELECTROCHIMICA ACTA[J]. 2020, 340: http://dx.doi.org/10.1016/j.electacta.2020.135990.
[30] Wang, Lili, Zhang, Haitao, Wang, Yanlei, Qian, Cheng, Dong, Qiang, Deng, Chonghai, Jiang, Danfeng, Shu, Mengyao, Pan, Shanshan, Zhang, Suojiang. Unleashing ultra-fast sodium ion storage mechanisms in interface-engineered monolayer MoS2/C interoverlapped superstructure with robust charge transfer networks. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2020, 8(30): 15002-15011, https://www.webofscience.com/wos/woscc/full-record/WOS:000555361700011.
[31] Li, Jiajia, Pan, Shanshan, Xing, Chunxian, Guo, Liquan, Zhou, Ziyou, Zhang, Haitao. Boosting the energy density of a flexible TiNb2O7@CNF-based lithium-ion supercapacitor with an ionogel separator. IONICS[J]. 2020, 26(11): 5715-5723, http://dx.doi.org/10.1007/s11581-020-03717-7.
[32] Song, Xianli, Qi, Wen, Zhang, Haitao, Wang, Gongying. Construction of core-shell nanofiber membrane with enhanced interface compatibility for lithium-metal battery. SOLID STATE IONICS[J]. 2020, 347: http://dx.doi.org/10.1016/j.ssi.2020.115266.
[33] Zhang, Jiahe, Zhang, Haitao, Zhang, Yaqin, Zhang, Junwei, He, Hongyan, Zhang, Xixiang, Shim, JaeJin, Zhang, Suojiang. Unveiling of the energy storage mechanisms of multi -modified (Nb2O5@C)/rGO nanoarrays as anode for high voltage supercapacitors with formulated ionic liquid electrolytes. ELECTROCHIMICA ACTA[J]. 2019, 313: 532-543, http://dx.doi.org/10.1016/j.electacta.2019.04.160.
[34] Yu, Zhongliang, Zhang, Jiahe, Xing, Chunxian, Hu, Lei, Wang, Lili, Ding, Ming, Zhang, Haitao. High energy density supercapacitor based on N/B co-doped graphene nanoarchitectures and ionic liquid electrolyte. IONICS[J]. 2019, 25(9): 4351-4360, https://www.webofscience.com/wos/woscc/full-record/WOS:000481943500033.
[35] Wu, Xiangkun, Song, Kaifang, Zhang, Xiaoyan, Hu, Naifang, Li, Liyuan, Li, Wenjie, Zhang, Lan, Zhang, Haitao. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. FRONTIERS IN ENERGY RESEARCH[J]. 2019, 7: https://doaj.org/article/f9f743cbfec447aca348d0827ff7a781.
[36] Jiao, Yuzhi, Zhang, Haitao, Zhang, Hailang, Liu, Ao, Liu, Yanxia, Zhang, Suojiang. Highly bonded T-Nb2O5/rGO nanohybrids for 4 V quasi-solid state asymmetric supercapacitors with improved electrochemical performance. NANO RESEARCH[J]. 2018, 11(9): 4673-4685, http://lib.cqvip.com/Qikan/Article/Detail?id=676099589.
[37] 张晓妍, 任宇飞, 高洁, 张兰, 张海涛. 动力电池电解液用添加剂的研究进展. 储能科学与技术[J]. 2018, 7(3): 404-417, http://lib.cqvip.com/Qikan/Article/Detail?id=7000647279.
[38] Shen, Peng, Zhang, Haitao, Zhang, Suojiang, Fei, Linfeng. Fabrication of completely interface-engineered Ni(OH)(2)/rGO nanoarchitectures for high-performance asymmetric supercapacitors. APPLIED SURFACE SCIENCE[J]. 2018, 460: 65-73, http://dx.doi.org/10.1016/j.apsusc.2017.09.145.
[39] Liu, Ao, Zhang, Haitao, Wang, Gao, Zhang, Jiahe, Zhang, Suojiang. Sandwich-like NiO/rGO nanoarchitectures for 4 V solid-state asymmetric-supercapacitors with high energy density. ELECTROCHIMICA ACTA[J]. 2018, 283: 1401-1410, http://dx.doi.org/10.1016/j.electacta.2018.07.099.
[40] Bulakhe, Ravindra N, Van Quang Nguyen, Tuma, Dirk, Lee, Yong Rok, Zhang, Haitao, Zhang, Suojiang, Shim, JaeJin. Chemically grown 3D copper hydroxide electrodes with different morphologies for high-performance asymmetric supercapacitors. JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY[J]. 2018, 66: 288-297, http://ir.ipe.ac.cn/handle/122111/26359.
[41] Wang, Jianping, Zhang, Lan, Zhang, Haitao. Effects of electrolyte additive on the electrochemical performance of Si/C anode for lithium-ion batteries. IONICS[J]. 2018, 24(11): 3691-3698, http://ir.ipe.ac.cn/handle/122111/26197.
[42] Cheng, Yuanyuan, Zhang, Lan, Xu, Song, Zhang, Haitao, Ren, Baozeng, Li, Tao, Zhang, Suojiang. Ionic liquid functionalized electrospun gel polymer electrolyte for use in a high-performance lithium metal battery. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2018, 6(38): 18479-18487, http://ir.ipe.ac.cn/handle/122111/26761.
[43] 赵永锋, 张海涛. 高纯六氟磷酸锂晶体产业化制备工艺研究进展. 过程工程学报[J]. 2018, 18(6): 1160-1166, http://ir.ipe.ac.cn/handle/122111/28721.
[44] Zhao, Yongfeng, Zhang, Haitao, Liu, Ao, Jiao, Yuzhi, Shim, JaeJin, Zhang, Suojiang. Fabrication of nanoarchitectured TiO2(B)@C/rGO electrode for 4 V quasi-solid-state nanohybrid supercapacitors. ELECTROCHIMICA ACTA[J]. 2017, 258: 343-352, http://dx.doi.org/10.1016/j.electacta.2017.11.060.
[45] Liu, He, Zhang, Haitao, Fei, Linfeng, Ma, Hongbin, Zhao, Guoying, Mak, CheeLeung, Zhang, Xixiang, Zhang, Suojiang. Superior acidic catalytic activity and stability of Fe-doped HTaWO6 nanotubes. NANOSCALE[J]. 2017, 9(31): 11126-11136, http://www.irgrid.ac.cn/handle/1471x/1763717.
[46] Jiao, Yuzhi, Zhang, Haitao, Dong, Tao, Shen, Peng, Cai, Yingjun, Zhang, Hailang, Zhang, Suojiang. Improved electrochemical performance in nanoengineered pomegranate-shaped Fe3O4/RGO nanohybrids anode material. JOURNAL OF MATERIALS SCIENCE[J]. 2017, 52(6): 3233-3243, http://ir.ipe.ac.cn/handle/122111/21853.
[47] 张海涛. Low-temperature microwave-assistant hydrothermal fabrication of RGO/MnO2-CNTs nanoarchitectures and their improved performance in supercapacitor. RSC Advances. 2016, [48] Shen, Peng, Zhang, Haitao, Zhang, Suojiang, Yuan, Pei, Yang, Yang, Zhang, Qiang, Zhang, Xixiang. Solvothermal synthesis of mesoporous magnetite nanoparticles for Cr(IV) ions uptake and microwave absorption. JOURNAL OF NANOPARTICLE RESEARCH[J]. 2016, 18(5): http://ir.ipe.ac.cn/handle/122111/21088.
[49] Zhang, Jie, Zhang, Hailang, Cai, Yingjun, Zhang, Haitao. Low-temperature microwave-assisted hydrothermal fabrication of RGO/MnO2-CNTs nanoarchitectures and their improved performance in supercapacitors. RSC ADVANCES[J]. 2016, 6(100): 98010-98017, http://www.irgrid.ac.cn/handle/1471x/1147455.
[50] Liu, He, Zhang, Haitao, Shen, Peng, Zhao, Guoying, Zhang, Suojiang. Size effects of alkylimidazolium cations on the interfacial properties and CO2 uptake capacity in layered organic-inorganic imidazolium-TiO2 hybrids. RSC ADVANCES[J]. 2016, 6(28): 23102-23109, http://www.irgrid.ac.cn/handle/1471x/1048215.
[51] Zhang, Haitao, Zhang, Suojiang, Zhang, Xixiang. Experimental Discovery of Magnetoresistance and Its Memory Effect in Methylimidazolium-Type Iron-Containing Ionic Liquids. CHEMISTRY OF MATERIALS[J]. 2016, 28(23): 8710-8714, http://www.irgrid.ac.cn/handle/1471x/1179117.
[52] Zhang, Junling, Chen, Shimou, Zhang, Haitao, Zhang, Suojiang, Yao, Xue, Shi, Zhaohui. Electrodeposition of crystalline silicon directly from silicon tetrachloride in ionic liquid at low temperature. RSC ADVANCES[J]. 2016, 6(15): 12061-12067, http://www.irgrid.ac.cn/handle/1471x/1047791.
[53] Liu, He, Zhang, Haitao, Shen, Peng, Chen, Feixiong, Zhang, Suojiang. Synergistic Effects in Nanoengineered HNb3O8/Graphene Hybrids with Improved Photocatalytic Conversion Ability of CO2 into Renewable Fuels. LANGMUIR[J]. 2016, 32(1): 254-264, http://www.irgrid.ac.cn/handle/1471x/1047781.
[54] Shen, P, Zhang, H T, Liu, H, Xin, J Y, Fei, L F, Luo, X G, Ma, R Z, Zhang, S J. Core-shell Fe3O4@SiO2@HNbMoO6 nanocomposites: new magnetically recyclable solid acid for heterogeneous catalysis. JOURNAL OF MATERIALS CHEMISTRY A[J]. 2015, 3(7): 3456-3464, http://www.irgrid.ac.cn/handle/1471x/945007.
[55] 刘鹤, 张海涛, 申鹏, 张锁江. 咪唑型离子液体-TiO2有机-无机纳米层状复合物中阳离子尺寸对CO2吸收性能的影响. 2015年中国化工学会年会论文集null. 2015, http://www.irgrid.ac.cn/handle/1471x/1188347.
[56] Zhang, HaiTao, Yang, Yang, Bao, NiNa, Ding, Jun. Scalable route to mesoporous iron oxides and their Cr(VI) ions uptake capacity study. MATERIALS CHEMISTRY AND PHYSICS[J]. 2014, 144(3): 512-518, http://dx.doi.org/10.1016/j.matchemphys.2014.01.028.
[57] Egan, Alison, Dong, Yan, Zhang, Haitao, Qi, Yanfeng, Balk, Steven P, Sartor, Oliver. Castration-resistant prostate cancer: Adaptive responses in the androgen axis. CANCER TREATMENT REVIEWSnull. 2014, 40(3): 426-433, http://dx.doi.org/10.1016/j.ctrv.2013.09.011.
[58] Zhang, HaiTao, Bao, NiNa, Yuan, Du, Ding, Jun. Nanomagnetism study of highly-ordered iron oxide nanocrystal assemblies fabricated by the Langmuir-Blodgett technique. PHYSICAL CHEMISTRY CHEMICAL PHYSICS[J]. 2013, 15(35): 14689-14695, http://ir.ipe.ac.cn/handle/122111/13680.
[59] Tu, Wenguang, Zhou, Yong, Liu, Qi, Tian, Zhongping, Gao, Jun, Chen, Xiaoyu, Zhang, Haitao, Liu, Jianguo, Zou, Zhigang. Robust Hollow Spheres Consisting of Alternating Titania Nanosheets and Graphene Nanosheets with High Photocatalytic Activity for CO2 Conversion into Renewable Fuels. ADVANCED FUNCTIONAL MATERIALS[J]. 2012, 22(6): 1215-1221, http://www.irgrid.ac.cn/handle/1471x/735698.
[60] Zhang, Ling, Yang, BaoXue, Zhang, HaiTao, Wang, JinGuo, Wang, HongLiang, Zhao, XueJian. Prostate cancer: an emerging threat to the health of aging men in Asia. ASIAN JOURNAL OF ANDROLOGY[J]. 2011, 13(4): 574-578, http://lib.cqvip.com/Qikan/Article/Detail?id=39528463.
[61] Shi, Rongrong, Liu, Xiaohe, Shi, Youguo, Ma, Renzhi, Jia, Baoping, Zhang, Haitao, Qiu, Guanzhou. Selective synthesis and magnetic properties of uniform CoTe and CoTe2 nanotubes. JOURNAL OF MATERIALS CHEMISTRY[J]. 2010, 20(36): 7634-7636, https://www.webofscience.com/wos/woscc/full-record/WOS:000281411000007.
[62] Yi, J B, Lim, C C, Xing, G Z, Fan, H M, Van, L H, Huang, S L, Yang, K S, Huang, X L, Qin, X B, Wang, B Y, Wu, T, Wang, L, Zhang, H T, Gao, X Y, Liu, T, Wee, A T S, Feng, Y P, Ding, J. Ferromagnetism in Dilute Magnetic Semiconductors through Defect Engineering: Li-Doped ZnO. PHYSICAL REVIEW LETTERS[J]. 2010, 104(13): http://ir.ihep.ac.cn/handle/311005/240999.
[63] Zhang, H T, Ding, J, Chow, G M. Synthesis and characterizations of Ni-Fe@spinel oxide core-shell nanoparticles. MATERIALS RESEARCH BULLETIN[J]. 2009, 44(5): 1195-1199, http://dx.doi.org/10.1016/j.materresbull.2008.09.042.
[64] Zhang, HaiTao, Ding, Jun, Chow, GanMoog, Ran, Min, Yi, JiaBao. Engineering Magnetic Properties of Ni Nanoparticles by Non-Magnetic Cores. CHEMISTRY OF MATERIALS[J]. 2009, 21(21): 5222-5228, https://www.webofscience.com/wos/woscc/full-record/WOS:000271234300029.
[65] Ma, Y W, Ding, J, Yi, J B, Zhang, H T, Ng, C M. Mechanism of room temperature ferromagnetism in ZnO doped with Al. JOURNAL OF APPLIED PHYSICS[J]. 2009, 105(7): https://www.webofscience.com/wos/woscc/full-record/WOS:000266633500430.
[66] Ma, Y W, Yi, J B, Ding, J, Van, L H, Zhang, H T, Ng, C M. Inducing ferromagnetism in ZnO through doping of nonmagnetic elements. APPLIED PHYSICS LETTERS[J]. 2008, 93(4): https://www.webofscience.com/wos/woscc/full-record/WOS:000258179800072.
[67] Long, Y Z, Yin, Z H, Chen, Z J, Jin, A Z, Gu, C Z, Zhang, H T, Chen, X H. Low-temperature electronic transport in single K0.27MnO2 center dot 0.5H(2)O nanowires: enhanced electron-electron interaction. NANOTECHNOLOGY[J]. 2008, 19(21): http://ir.iphy.ac.cn/handle/311004/41050.
[68] Zhang, HaiTao, Ding, Jun, Chow, GanMoog, Dong, ZhiLi. Engineering Inorganic Hybrid Nanoparticles: Tuning Combination Fashions of Gold, Platinum, and Iron Oxide. LANGMUIR[J]. 2008, 24(22): 13197-13202, https://www.webofscience.com/wos/woscc/full-record/WOS:000260874800067.
[69] Liu, Zhaoyang, Yi, Guangshun, Zhang, Haitao, Ding, Jun, Zhang, Yongwei, Xue, Junmin. Monodisperse silica nanoparticles encapsulating upconversion fluorescent and superparamagnetic nanocrystals. CHEMICAL COMMUNICATIONS[J]. 2008, 694-696, https://www.webofscience.com/wos/woscc/full-record/WOS:000252757100007.
[70] Zhang, HaiTao, Ding, Jun, Chow, GanMoog. Morphological control of synthesis and anomalous magnetic properties of 3-D branched Pt nanoparticles. LANGMUIR[J]. 2008, 24(2): 375-378, https://www.webofscience.com/wos/woscc/full-record/WOS:000252208200009.
[71] Zhang, H T, Wu, G, Chen, X H. Thermal stability and photoluminescence of Zr1-xCexO2 (0 <= x <= 1) nanoparticles synthesized in a non-aqueous process. MATERIALSCHEMISTRYANDPHYSICS[J]. 2007, 101(2-3): 415-422, http://dx.doi.org/10.1016/j.matchemphys.2006.07.008.
[72] Hu, Yong, Chen, JiaFu, Zhang, HaiTao, Li, TanWei, Xue, Xuan. Using silicon dioxide nanosphere gaps to confine growth of single-crystal nickel sulfide nanowires in polyacrylamide gel. SCRIPTA MATERIALIA[J]. 2006, 55(2): 131-134, https://www.webofscience.com/wos/woscc/full-record/WOS:000238018600005.
[73] Zhang, HaiTao, Chen, XianHui. Morphology-controllable synthesis and characterization of hierarchical 3D Co1-xMnxO nanostructures. JOURNAL OF PHYSICAL CHEMISTRY B[J]. 2006, 110(19): 9442-9447, https://www.webofscience.com/wos/woscc/full-record/WOS:000237590800013.
[74] Chunxian Xing, Haitao Zhang, Shanshan Pan, Meng Yao, Bosen Li, Yaqin Zhang, Suojiang Zhang. Boosting the safety and energy density of MoS2/CNTs based solid-state sodium-ion supercapacitor with an ionogel electrolyte. MATERIALS TODAY ENERGY. http://dx.doi.org/10.1016/j.mtener.2020.100527.
[75] Jiajia Li, Fangfang Li, Lan Zhang, Haitao Zhang, Ulla Lassi, Xiaoyan Ji. Recent applications of ionic liquids in quasi-solid-state lithium metal batteries. GREEN CHEMICAL ENGINEERING. http://dx.doi.org/10.1016/j.gce.2021.03.001.